Comment: This TM produces 84 nonzeros in 6445 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
| A | 1RB | 2LA | 1RA | 1LA | 1 | right | B | 2 | left | A | 1 | right | A | 1 | left | A |
| B | 3LA | 1RH | 2RB | 2LA | 3 | left | A | 1 | right | H | 2 | right | B | 2 | left | A |
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.
Step Tpos St Tape contents
0 0 A . . . 0
1 1 B . . . 10
2 0 A . . . 13
3 -1 A . . .023
4 0 B . . .123
5 1 B . . .123
6 0 A . . .122
7 1 A . . .112
8 2 A . . .1110
9 3 B . . .11110
10 2 A . . .11113
11 1 A . . .11123
12 0 A . . .11223
13 -1 A . . .12223
14 -2 A . . 022223
15 -1 B . . 122223
16 0 B . . 122223
17 1 B . . 122223
18 2 B . . 122223
19 3 B . . 122223
20 2 A . . 122222
21 3 A . . 122212
22 4 A . . 1222110
23 5 B . . 12221110
24 4 A . . 12221113
25 3 A . . 12221123
26 2 A . . 12221223
27 1 A . . 12222223
28 2 A . . 12212223
29 3 A . . 12211223
30 4 A . . 12211123
31 5 A . . 12211113
32 4 A . . 12211111
33 3 A . . 12211121
34 2 A . . 12211221
35 1 A . . 12212221
36 0 A . . 12222221
37 1 A . . 12122221
38 2 A . . 12112221
39 3 A . . 12111221
40 4 A . . 12111121
41 5 A . . 12111111
42 4 A . . 12111112
43 3 A . . 12111122
44 2 A . . 12111222
45 1 A . . 12112222
46 0 A . . 12122222
47 -1 A . . 12222222
48 0 A . . 11222222
49 1 A . . 11122222
50 2 A . . 11112222
51 3 A . . 11111222
52 4 A . . 11111122
53 5 A . . 11111112
54 6 A . . 111111110
55 7 B . . 1111111110
56 6 A . . 1111111113
57 5 A . . 1111111123
58 4 A . . 1111111223
59 3 A . . 1111112223
60 2 A . . 1111122223
61 1 A . . 1111222223
62 0 A . . 1112222223
63 -1 A . . 1122222223
64 -2 A . . 1222222223
65 -3 A . .02222222223
66 -2 B . .12222222223
67 -1 B . .12222222223
68 0 B . .12222222223
69 1 B . .12222222223
70 2 B . .12222222223
71 3 B . .12222222223
72 4 B . .12222222223
73 5 B . .12222222223
74 6 B . .12222222223
75 7 B . .12222222223
76 6 A . .12222222222
77 7 A . .12222222212
78 8 A . .122222222110
79 9 B . .1222222221110
80 8 A . .1222222221113
81 7 A . .1222222221123
82 6 A . .1222222221223
83 5 A . .1222222222223
84 6 A . .1222222212223
85 7 A . .1222222211223
86 8 A . .1222222211123
87 9 A . .1222222211113
88 8 A . .1222222211111
89 7 A . .1222222211121
90 6 A . .1222222211221
91 5 A . .1222222212221
92 4 A . .1222222222221
93 5 A . .1222222122221
94 6 A . .1222222112221
95 7 A . .1222222111221
96 8 A . .1222222111121
97 9 A . .1222222111111
98 8 A . .1222222111112
99 7 A . .1222222111122
100 6 A . .1222222111222
101 5 A . .1222222112222
102 4 A . .1222222122222
103 3 A . .1222222222222
104 4 A . .1222221222222
105 5 A . .1222221122222
106 6 A . .1222221112222
107 7 A . .1222221111222
108 8 A . .1222221111122
109 9 A . .1222221111112
110 10 A . .12222211111110
111 11 B . .122222111111110
112 10 A . .122222111111113
113 9 A . .122222111111123
114 8 A . .122222111111223
115 7 A . .122222111112223
116 6 A . .122222111122223
117 5 A . .122222111222223
118 4 A . .122222112222223
119 3 A . .122222122222223
120 2 A . .122222222222223
121 3 A . .122221222222223
122 4 A . .122221122222223
123 5 A . .122221112222223
124 6 A . .122221111222223
125 7 A . .122221111122223
126 8 A . .122221111112223
127 9 A . .122221111111223
128 10 A . .122221111111123
129 11 A . .122221111111113
130 10 A . .122221111111111
131 9 A . .122221111111121
132 8 A . .122221111111221
133 7 A . .122221111112221
134 6 A . .122221111122221
135 5 A . .122221111222221
136 4 A . .122221112222221
137 3 A . .122221122222221
138 2 A . .122221222222221
139 1 A . .122222222222221
140 2 A . .122212222222221
141 3 A . .122211222222221
142 4 A . .122211122222221
143 5 A . .122211112222221
144 6 A . .122211111222221
145 7 A . .122211111122221
146 8 A . .122211111112221
147 9 A . .122211111111221
148 10 A . .122211111111121
149 11 A . .122211111111111
150 10 A . .122211111111112
151 9 A . .122211111111122
152 8 A . .122211111111222
153 7 A . .122211111112222
154 6 A . .122211111122222
155 5 A . .122211111222222
156 4 A . .122211112222222
157 3 A . .122211122222222
158 2 A . .122211222222222
159 1 A . .122212222222222
160 0 A . .122222222222222
161 1 A . .122122222222222
162 2 A . .122112222222222
163 3 A . .122111222222222
164 4 A . .122111122222222
165 5 A . .122111112222222
166 6 A . .122111111222222
167 7 A . .122111111122222
168 8 A . .122111111112222
169 9 A . .122111111111222
170 10 A . .122111111111122
171 11 A . .122111111111112
172 12 A . .1221111111111110
173 13 B . .12211111111111110
174 12 A . .12211111111111113
175 11 A . .12211111111111123
176 10 A . .12211111111111223
177 9 A . .12211111111112223
178 8 A . .12211111111122223
179 7 A . .12211111111222223
180 6 A . .12211111112222223
181 5 A . .12211111122222223
182 4 A . .12211111222222223
183 3 A . .12211112222222223
184 2 A . .12211122222222223
185 1 A . .12211222222222223
186 0 A . .12212222222222223
187 -1 A . .12222222222222223
188 0 A . .12122222222222223
189 1 A . .12112222222222223
190 2 A . .12111222222222223
191 3 A . .12111122222222223
192 4 A . .12111112222222223
193 5 A . .12111111222222223
194 6 A . .12111111122222223
195 7 A . .12111111112222223
196 8 A . .12111111111222223
197 9 A . .12111111111122223
198 10 A . .12111111111112223
199 11 A . .12111111111111223
200 12 A . .12111111111111123
After 200 steps (201 lines): state = A.
Produced 17 nonzeros.
Tape index 12, scanned [-3 .. 13].
| State | Count | Execution count | First in step | ||||||
|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
| A | 176 | 10 | 81 | 82 | 3 | 0 | 2 | 6 | 31 |
| B | 24 | 7 | 14 | 3 | 1 | 4 | 5 | ||