2-state 4-symbol contender (cited from P.Michel)

Comment: This TM produces 84 nonzeros in 6445 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on 0 on 1 on 2 on 3
Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 2LA 1RA 1LA 1 right B 2 left A 1 right A 1 left A
B 3LA 1RH 2RB 2LA 3 left A 1 right H 2 right B 2 left A
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . . 0
     1    1 B . . . 10
     2    0 A . . . 13
     3   -1 A . . .023
     4    0 B . . .123
     5    1 B . . .123
     6    0 A . . .122
     7    1 A . . .112
     8    2 A . . .1110
     9    3 B . . .11110
    10    2 A . . .11113
    11    1 A . . .11123
    12    0 A . . .11223
    13   -1 A . . .12223
    14   -2 A . . 022223
    15   -1 B . . 122223
    16    0 B . . 122223
    17    1 B . . 122223
    18    2 B . . 122223
    19    3 B . . 122223
    20    2 A . . 122222
    21    3 A . . 122212
    22    4 A . . 1222110
    23    5 B . . 12221110
    24    4 A . . 12221113
    25    3 A . . 12221123
    26    2 A . . 12221223
    27    1 A . . 12222223
    28    2 A . . 12212223
    29    3 A . . 12211223
    30    4 A . . 12211123
    31    5 A . . 12211113
    32    4 A . . 12211111
    33    3 A . . 12211121
    34    2 A . . 12211221
    35    1 A . . 12212221
    36    0 A . . 12222221
    37    1 A . . 12122221
    38    2 A . . 12112221
    39    3 A . . 12111221
    40    4 A . . 12111121
    41    5 A . . 12111111
    42    4 A . . 12111112
    43    3 A . . 12111122
    44    2 A . . 12111222
    45    1 A . . 12112222
    46    0 A . . 12122222
    47   -1 A . . 12222222
    48    0 A . . 11222222
    49    1 A . . 11122222
    50    2 A . . 11112222
    51    3 A . . 11111222
    52    4 A . . 11111122
    53    5 A . . 11111112
    54    6 A . . 111111110
    55    7 B . . 1111111110
    56    6 A . . 1111111113
    57    5 A . . 1111111123
    58    4 A . . 1111111223
    59    3 A . . 1111112223
    60    2 A . . 1111122223
    61    1 A . . 1111222223
    62    0 A . . 1112222223
    63   -1 A . . 1122222223
    64   -2 A . . 1222222223
    65   -3 A . .02222222223
    66   -2 B . .12222222223
    67   -1 B . .12222222223
    68    0 B . .12222222223
    69    1 B . .12222222223
    70    2 B . .12222222223
    71    3 B . .12222222223
    72    4 B . .12222222223
    73    5 B . .12222222223
    74    6 B . .12222222223
    75    7 B . .12222222223
    76    6 A . .12222222222
    77    7 A . .12222222212
    78    8 A . .122222222110
    79    9 B . .1222222221110
    80    8 A . .1222222221113
    81    7 A . .1222222221123
    82    6 A . .1222222221223
    83    5 A . .1222222222223
    84    6 A . .1222222212223
    85    7 A . .1222222211223
    86    8 A . .1222222211123
    87    9 A . .1222222211113
    88    8 A . .1222222211111
    89    7 A . .1222222211121
    90    6 A . .1222222211221
    91    5 A . .1222222212221
    92    4 A . .1222222222221
    93    5 A . .1222222122221
    94    6 A . .1222222112221
    95    7 A . .1222222111221
    96    8 A . .1222222111121
    97    9 A . .1222222111111
    98    8 A . .1222222111112
    99    7 A . .1222222111122
   100    6 A . .1222222111222
   101    5 A . .1222222112222
   102    4 A . .1222222122222
   103    3 A . .1222222222222
   104    4 A . .1222221222222
   105    5 A . .1222221122222
   106    6 A . .1222221112222
   107    7 A . .1222221111222
   108    8 A . .1222221111122
   109    9 A . .1222221111112
   110   10 A . .12222211111110
   111   11 B . .122222111111110
   112   10 A . .122222111111113
   113    9 A . .122222111111123
   114    8 A . .122222111111223
   115    7 A . .122222111112223
   116    6 A . .122222111122223
   117    5 A . .122222111222223
   118    4 A . .122222112222223
   119    3 A . .122222122222223
   120    2 A . .122222222222223
   121    3 A . .122221222222223
   122    4 A . .122221122222223
   123    5 A . .122221112222223
   124    6 A . .122221111222223
   125    7 A . .122221111122223
   126    8 A . .122221111112223
   127    9 A . .122221111111223
   128   10 A . .122221111111123
   129   11 A . .122221111111113
   130   10 A . .122221111111111
   131    9 A . .122221111111121
   132    8 A . .122221111111221
   133    7 A . .122221111112221
   134    6 A . .122221111122221
   135    5 A . .122221111222221
   136    4 A . .122221112222221
   137    3 A . .122221122222221
   138    2 A . .122221222222221
   139    1 A . .122222222222221
   140    2 A . .122212222222221
   141    3 A . .122211222222221
   142    4 A . .122211122222221
   143    5 A . .122211112222221
   144    6 A . .122211111222221
   145    7 A . .122211111122221
   146    8 A . .122211111112221
   147    9 A . .122211111111221
   148   10 A . .122211111111121
   149   11 A . .122211111111111
   150   10 A . .122211111111112
   151    9 A . .122211111111122
   152    8 A . .122211111111222
   153    7 A . .122211111112222
   154    6 A . .122211111122222
   155    5 A . .122211111222222
   156    4 A . .122211112222222
   157    3 A . .122211122222222
   158    2 A . .122211222222222
   159    1 A . .122212222222222
   160    0 A . .122222222222222
   161    1 A . .122122222222222
   162    2 A . .122112222222222
   163    3 A . .122111222222222
   164    4 A . .122111122222222
   165    5 A . .122111112222222
   166    6 A . .122111111222222
   167    7 A . .122111111122222
   168    8 A . .122111111112222
   169    9 A . .122111111111222
   170   10 A . .122111111111122
   171   11 A . .122111111111112
   172   12 A . .1221111111111110
   173   13 B . .12211111111111110
   174   12 A . .12211111111111113
   175   11 A . .12211111111111123
   176   10 A . .12211111111111223
   177    9 A . .12211111111112223
   178    8 A . .12211111111122223
   179    7 A . .12211111111222223
   180    6 A . .12211111112222223
   181    5 A . .12211111122222223
   182    4 A . .12211111222222223
   183    3 A . .12211112222222223
   184    2 A . .12211122222222223
   185    1 A . .12211222222222223
   186    0 A . .12212222222222223
   187   -1 A . .12222222222222223
   188    0 A . .12122222222222223
   189    1 A . .12112222222222223
   190    2 A . .12111222222222223
   191    3 A . .12111122222222223
   192    4 A . .12111112222222223
   193    5 A . .12111111222222223
   194    6 A . .12111111122222223
   195    7 A . .12111111112222223
   196    8 A . .12111111111222223
   197    9 A . .12111111111122223
   198   10 A . .12111111111112223
   199   11 A . .12111111111111223
   200   12 A . .12111111111111123

After 200 steps (201 lines): state = A.
Produced     17 nonzeros.
Tape index 12, scanned [-3 .. 13].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 0 on 1 on 2 on 3
A 176 10 81 82 3 0 2 6 31
B 24 7   14 3 1   4 5
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:12:34 CEST 2010