Comment: This TM produces 84 nonzeros in 6445 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
A | 1RB | 2LA | 1RA | 1LA | 1 | right | B | 2 | left | A | 1 | right | A | 1 | left | A |
B | 3LA | 1RH | 2RB | 2LA | 3 | left | A | 1 | right | H | 2 | right | B | 2 | left | A |
Simulation is done just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. The same TM as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Step Tpos St Tape contents 0 0 A . . . 0 1 1 B . . . 10 2 0 A . . . 13 3 -1 A . . .023 4 0 B . . .123 5 1 B . . .123 6 0 A . . .122 7 1 A . . .112 8 2 A . . .1110 9 3 B . . .11110 10 2 A . . .11113 11 1 A . . .11123 12 0 A . . .11223 13 -1 A . . .12223 14 -2 A . . 022223 15 -1 B . . 122223 16 0 B . . 122223 17 1 B . . 122223 18 2 B . . 122223 19 3 B . . 122223 20 2 A . . 122222 21 3 A . . 122212 22 4 A . . 1222110 23 5 B . . 12221110 24 4 A . . 12221113 25 3 A . . 12221123 26 2 A . . 12221223 27 1 A . . 12222223 28 2 A . . 12212223 29 3 A . . 12211223 30 4 A . . 12211123 31 5 A . . 12211113 32 4 A . . 12211111 33 3 A . . 12211121 34 2 A . . 12211221 35 1 A . . 12212221 36 0 A . . 12222221 37 1 A . . 12122221 38 2 A . . 12112221 39 3 A . . 12111221 40 4 A . . 12111121 41 5 A . . 12111111 42 4 A . . 12111112 43 3 A . . 12111122 44 2 A . . 12111222 45 1 A . . 12112222 46 0 A . . 12122222 47 -1 A . . 12222222 48 0 A . . 11222222 49 1 A . . 11122222 50 2 A . . 11112222 51 3 A . . 11111222 52 4 A . . 11111122 53 5 A . . 11111112 54 6 A . . 111111110 55 7 B . . 1111111110 56 6 A . . 1111111113 57 5 A . . 1111111123 58 4 A . . 1111111223 59 3 A . . 1111112223 60 2 A . . 1111122223 61 1 A . . 1111222223 62 0 A . . 1112222223 63 -1 A . . 1122222223 64 -2 A . . 1222222223 65 -3 A . .02222222223 66 -2 B . .12222222223 67 -1 B . .12222222223 68 0 B . .12222222223 69 1 B . .12222222223 70 2 B . .12222222223 71 3 B . .12222222223 72 4 B . .12222222223 73 5 B . .12222222223 74 6 B . .12222222223 75 7 B . .12222222223 76 6 A . .12222222222 77 7 A . .12222222212 78 8 A . .122222222110 79 9 B . .1222222221110 80 8 A . .1222222221113 81 7 A . .1222222221123 82 6 A . .1222222221223 83 5 A . .1222222222223 84 6 A . .1222222212223 85 7 A . .1222222211223 86 8 A . .1222222211123 87 9 A . .1222222211113 88 8 A . .1222222211111 89 7 A . .1222222211121 90 6 A . .1222222211221 91 5 A . .1222222212221 92 4 A . .1222222222221 93 5 A . .1222222122221 94 6 A . .1222222112221 95 7 A . .1222222111221 96 8 A . .1222222111121 97 9 A . .1222222111111 98 8 A . .1222222111112 99 7 A . .1222222111122 100 6 A . .1222222111222 101 5 A . .1222222112222 102 4 A . .1222222122222 103 3 A . .1222222222222 104 4 A . .1222221222222 105 5 A . .1222221122222 106 6 A . .1222221112222 107 7 A . .1222221111222 108 8 A . .1222221111122 109 9 A . .1222221111112 110 10 A . .12222211111110 111 11 B . .122222111111110 112 10 A . .122222111111113 113 9 A . .122222111111123 114 8 A . .122222111111223 115 7 A . .122222111112223 116 6 A . .122222111122223 117 5 A . .122222111222223 118 4 A . .122222112222223 119 3 A . .122222122222223 120 2 A . .122222222222223 121 3 A . .122221222222223 122 4 A . .122221122222223 123 5 A . .122221112222223 124 6 A . .122221111222223 125 7 A . .122221111122223 126 8 A . .122221111112223 127 9 A . .122221111111223 128 10 A . .122221111111123 129 11 A . .122221111111113 130 10 A . .122221111111111 131 9 A . .122221111111121 132 8 A . .122221111111221 133 7 A . .122221111112221 134 6 A . .122221111122221 135 5 A . .122221111222221 136 4 A . .122221112222221 137 3 A . .122221122222221 138 2 A . .122221222222221 139 1 A . .122222222222221 140 2 A . .122212222222221 141 3 A . .122211222222221 142 4 A . .122211122222221 143 5 A . .122211112222221 144 6 A . .122211111222221 145 7 A . .122211111122221 146 8 A . .122211111112221 147 9 A . .122211111111221 148 10 A . .122211111111121 149 11 A . .122211111111111 150 10 A . .122211111111112 151 9 A . .122211111111122 152 8 A . .122211111111222 153 7 A . .122211111112222 154 6 A . .122211111122222 155 5 A . .122211111222222 156 4 A . .122211112222222 157 3 A . .122211122222222 158 2 A . .122211222222222 159 1 A . .122212222222222 160 0 A . .122222222222222 161 1 A . .122122222222222 162 2 A . .122112222222222 163 3 A . .122111222222222 164 4 A . .122111122222222 165 5 A . .122111112222222 166 6 A . .122111111222222 167 7 A . .122111111122222 168 8 A . .122111111112222 169 9 A . .122111111111222 170 10 A . .122111111111122 171 11 A . .122111111111112 172 12 A . .1221111111111110 173 13 B . .12211111111111110 174 12 A . .12211111111111113 175 11 A . .12211111111111123 176 10 A . .12211111111111223 177 9 A . .12211111111112223 178 8 A . .12211111111122223 179 7 A . .12211111111222223 180 6 A . .12211111112222223 181 5 A . .12211111122222223 182 4 A . .12211111222222223 183 3 A . .12211112222222223 184 2 A . .12211122222222223 185 1 A . .12211222222222223 186 0 A . .12212222222222223 187 -1 A . .12222222222222223 188 0 A . .12122222222222223 189 1 A . .12112222222222223 190 2 A . .12111222222222223 191 3 A . .12111122222222223 192 4 A . .12111112222222223 193 5 A . .12111111222222223 194 6 A . .12111111122222223 195 7 A . .12111111112222223 196 8 A . .12111111111222223 197 9 A . .12111111111122223 198 10 A . .12111111111112223 199 11 A . .12111111111111223 200 12 A . .12111111111111123 After 200 steps (201 lines): state = A. Produced 17 nonzeros. Tape index 12, scanned [-3 .. 13].
State | Count | Execution count | First in step | ||||||
---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
A | 176 | 10 | 81 | 82 | 3 | 0 | 2 | 6 | 31 |
B | 24 | 7 | 14 | 3 | 1 | 4 | 5 |