2-state 4-symbol contender (cited from P.Michel)

Comment: This TM produces 84 nonzeros in 6445 steps.

State on
0
on
1
on
2
on
3
on 0 on 1 on 2 on 3
Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 2LA 1RA 1LA 1 right B 2 left A 1 right A 1 left A
B 3LA 1RH 2RB 2LA 3 left A 1 right H 2 right B 2 left A
Transition table
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

Pushing initial machine.
Pushing macro factor 1.

Steps BasSteps BasTpos  Tape contents
    0        0       0  A>
    1        1       1  1 B>
    2        2       0  1 <A 3
    3        3      -1  <A 2 3
    4        4       0  1 B> 2 3
    5        5       1  1 2 B> 3
    6        6       0  1 2 <A 2
    7        7       1  12 A> 2
    8        8       2  13 A>
    9        9       3  14 B>
   10       10       2  14 <A 3
   11       14      -2  <A 24 3
   12       15      -1  1 B> 24 3
   13       19       3  1 24 B> 3
   14       20       2  1 24 <A 2
   15       21       3  1 23 1 A> 2
   16       22       4  1 23 12 A>
   17       23       5  1 23 13 B>
   18       24       4  1 23 13 <A 3
   19       27       1  1 23 <A 23 3
   20       28       2  1 22 1 A> 23 3
   21       31       5  1 22 14 A> 3
   22       32       4  1 22 14 <A 1
   23       36       0  1 22 <A 24 1
   24       37       1  1 2 1 A> 24 1
   25       41       5  1 2 15 A> 1
   26       42       4  1 2 15 <A 2
   27       47      -1  1 2 <A 26
   28       48       0  12 A> 26
   29       54       6  18 A>
   30       55       7  19 B>
   31       56       6  19 <A 3
   32       65      -3  <A 29 3
   33       66      -2  1 B> 29 3
   34       75       7  1 29 B> 3
   35       76       6  1 29 <A 2
   36       77       7  1 28 1 A> 2
   37       78       8  1 28 12 A>
   38       79       9  1 28 13 B>
   39       80       8  1 28 13 <A 3
   40       83       5  1 28 <A 23 3
   41       84       6  1 27 1 A> 23 3
   42       87       9  1 27 14 A> 3
   43       88       8  1 27 14 <A 1
   44       92       4  1 27 <A 24 1
   45       93       5  1 26 1 A> 24 1
   46       97       9  1 26 15 A> 1
   47       98       8  1 26 15 <A 2
   48      103       3  1 26 <A 26
   49      104       4  1 25 1 A> 26
   50      110      10  1 25 17 A>
   51      111      11  1 25 18 B>
   52      112      10  1 25 18 <A 3
   53      120       2  1 25 <A 28 3
   54      121       3  1 24 1 A> 28 3
   55      129      11  1 24 19 A> 3
   56      130      10  1 24 19 <A 1
   57      139       1  1 24 <A 29 1
   58      140       2  1 23 1 A> 29 1
   59      149      11  1 23 110 A> 1
   60      150      10  1 23 110 <A 2
   61      160       0  1 23 <A 211
   62      161       1  1 22 1 A> 211
   63      172      12  1 22 112 A>
   64      173      13  1 22 113 B>
   65      174      12  1 22 113 <A 3
   66      187      -1  1 22 <A 213 3
   67      188       0  1 2 1 A> 213 3
   68      201      13  1 2 114 A> 3
   69      202      12  1 2 114 <A 1
   70      216      -2  1 2 <A 214 1
   71      217      -1  12 A> 214 1
   72      231      13  116 A> 1
   73      232      12  116 <A 2
   74      248      -4  <A 217
   75      249      -3  1 B> 217
   76      266      14  1 217 B>
   77      267      13  1 217 <A 3
   78      268      14  1 216 1 A> 3
   79      269      13  1 216 1 <A 1
   80      270      12  1 216 <A 2 1
   81      271      13  1 215 1 A> 2 1
   82      272      14  1 215 12 A> 1
   83      273      13  1 215 12 <A 2
   84      275      11  1 215 <A 23
   85      276      12  1 214 1 A> 23
   86      279      15  1 214 14 A>
   87      280      16  1 214 15 B>
   88      281      15  1 214 15 <A 3
   89      286      10  1 214 <A 25 3
   90      287      11  1 213 1 A> 25 3
   91      292      16  1 213 16 A> 3
   92      293      15  1 213 16 <A 1
   93      299       9  1 213 <A 26 1
   94      300      10  1 212 1 A> 26 1
   95      306      16  1 212 17 A> 1
   96      307      15  1 212 17 <A 2
   97      314       8  1 212 <A 28
   98      315       9  1 211 1 A> 28
   99      323      17  1 211 19 A>
  100      324      18  1 211 110 B>
  101      325      17  1 211 110 <A 3
  102      335       7  1 211 <A 210 3
  103      336       8  1 210 1 A> 210 3
  104      346      18  1 210 111 A> 3
  105      347      17  1 210 111 <A 1
  106      358       6  1 210 <A 211 1
  107      359       7  1 29 1 A> 211 1
  108      370      18  1 29 112 A> 1
  109      371      17  1 29 112 <A 2
  110      383       5  1 29 <A 213
  111      384       6  1 28 1 A> 213
  112      397      19  1 28 114 A>
  113      398      20  1 28 115 B>
  114      399      19  1 28 115 <A 3
  115      414       4  1 28 <A 215 3
  116      415       5  1 27 1 A> 215 3
  117      430      20  1 27 116 A> 3
  118      431      19  1 27 116 <A 1
  119      447       3  1 27 <A 216 1
  120      448       4  1 26 1 A> 216 1
  121      464      20  1 26 117 A> 1
  122      465      19  1 26 117 <A 2
  123      482       2  1 26 <A 218
  124      483       3  1 25 1 A> 218
  125      501      21  1 25 119 A>
  126      502      22  1 25 120 B>
  127      503      21  1 25 120 <A 3
  128      523       1  1 25 <A 220 3
  129      524       2  1 24 1 A> 220 3
  130      544      22  1 24 121 A> 3
  131      545      21  1 24 121 <A 1
  132      566       0  1 24 <A 221 1
  133      567       1  1 23 1 A> 221 1
  134      588      22  1 23 122 A> 1
  135      589      21  1 23 122 <A 2
  136      611      -1  1 23 <A 223
  137      612       0  1 22 1 A> 223
  138      635      23  1 22 124 A>
  139      636      24  1 22 125 B>
  140      637      23  1 22 125 <A 3
  141      662      -2  1 22 <A 225 3
  142      663      -1  1 2 1 A> 225 3
  143      688      24  1 2 126 A> 3
  144      689      23  1 2 126 <A 1
  145      715      -3  1 2 <A 226 1
  146      716      -2  12 A> 226 1
  147      742      24  128 A> 1
  148      743      23  128 <A 2
  149      771      -5  <A 229
  150      772      -4  1 B> 229
  151      801      25  1 229 B>
  152      802      24  1 229 <A 3
  153      803      25  1 228 1 A> 3
  154      804      24  1 228 1 <A 1
  155      805      23  1 228 <A 2 1
  156      806      24  1 227 1 A> 2 1
  157      807      25  1 227 12 A> 1
  158      808      24  1 227 12 <A 2
  159      810      22  1 227 <A 23
  160      811      23  1 226 1 A> 23
  161      814      26  1 226 14 A>
  162      815      27  1 226 15 B>
  163      816      26  1 226 15 <A 3
  164      821      21  1 226 <A 25 3
  165      822      22  1 225 1 A> 25 3
  166      827      27  1 225 16 A> 3
  167      828      26  1 225 16 <A 1
  168      834      20  1 225 <A 26 1
  169      835      21  1 224 1 A> 26 1
  170      841      27  1 224 17 A> 1
  171      842      26  1 224 17 <A 2
  172      849      19  1 224 <A 28
  173      850      20  1 223 1 A> 28
  174      858      28  1 223 19 A>
  175      859      29  1 223 110 B>
  176      860      28  1 223 110 <A 3
  177      870      18  1 223 <A 210 3
  178      871      19  1 222 1 A> 210 3
  179      881      29  1 222 111 A> 3
  180      882      28  1 222 111 <A 1
  181      893      17  1 222 <A 211 1
  182      894      18  1 221 1 A> 211 1
  183      905      29  1 221 112 A> 1
  184      906      28  1 221 112 <A 2
  185      918      16  1 221 <A 213
  186      919      17  1 220 1 A> 213
  187      932      30  1 220 114 A>
  188      933      31  1 220 115 B>
  189      934      30  1 220 115 <A 3
  190      949      15  1 220 <A 215 3
  191      950      16  1 219 1 A> 215 3
  192      965      31  1 219 116 A> 3
  193      966      30  1 219 116 <A 1
  194      982      14  1 219 <A 216 1
  195      983      15  1 218 1 A> 216 1
  196      999      31  1 218 117 A> 1
  197     1000      30  1 218 117 <A 2
  198     1017      13  1 218 <A 218
  199     1018      14  1 217 1 A> 218
  200     1036      32  1 217 119 A>

Lines:       201
Top steps:   200
Macro steps: 200
Basic steps: 1036
Tape index:  32
nonzeros:    37
log10(nonzeros):    1.568
log10(steps   ):    3.015

The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Input to awk program:
    gohalt 1
    nbs 4
    T 2-state 4-symbol contender (cited from P.Michel)
    : 84 6445
    5T  1RB 2LA 1RA 1LA  3LA 1RH 2RB 2LA
    L 6
    M	201
    pref	sim
    machv TM24_a  	just simple
    machv TM24_a-r	with repetitions reduced
    machv TM24_a-1	with tape symbol exponents
    machv TM24_a-m	as 1-macro machine
    machv TM24_a-a	as 1-macro machine with pure additive config-TRs
    iam	TM24_a-m
    mtype	1
    mmtyp	1
    r	1
    H	1
    mac	0
    E	2
    sympr	
    HM	1
    date	Tue Jul  6 22:12:34 CEST 2010
    edate	Tue Jul  6 22:12:35 CEST 2010
    bnspeed	1

Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:12:34 CEST 2010
Ready: Tue Jul 6 22:12:35 CEST 2010