2-state 4-symbol contender (cited from P.Michel)

Comment: This TM produces 84 nonzeros in 6445 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on 0 on 1 on 2 on 3
Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 2LA 1RA 1LA 1 right B 2 left A 1 right A 1 left A
B 3LA 1RH 2RB 2LA 3 left A 1 right H 2 right B 2 left A
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     0  1 <A 3
     3    -1  <A 2 3
     4     0  1 B> 2 3
     5     1  1 2 B> 3
     6     0  1 2 <A 2
     7     1  1 1 A> 2
     8     2  13 A>
     9     3  14 B>
    10     2  14 <A 3
+   14    -2  <A 24 3
    15    -1  1 B> 24 3
+   19     3  1 24 B> 3
    20     2  1 24 <A 2
    21     3  1 23 1 A> 2
    22     4  1 23 1 1 A>
    23     5  1 23 13 B>
    24     4  1 23 13 <A 3
+   27     1  1 23 <A 23 3
    28     2  1 2 2 1 A> 23 3
+   31     5  1 2 2 14 A> 3
    32     4  1 2 2 14 <A 1
+   36     0  1 2 2 <A 24 1
    37     1  1 2 1 A> 24 1
+   41     5  1 2 15 A> 1
    42     4  1 2 15 <A 2
+   47    -1  1 2 <A 26
    48     0  1 1 A> 26
+   54     6  18 A>
    55     7  19 B>
    56     6  19 <A 3
+   65    -3  <A 29 3
    66    -2  1 B> 29 3
+   75     7  1 29 B> 3
    76     6  1 29 <A 2
    77     7  1 28 1 A> 2
    78     8  1 28 1 1 A>
    79     9  1 28 13 B>
    80     8  1 28 13 <A 3
+   83     5  1 28 <A 23 3
    84     6  1 27 1 A> 23 3
+   87     9  1 27 14 A> 3
    88     8  1 27 14 <A 1
+   92     4  1 27 <A 24 1
    93     5  1 26 1 A> 24 1
+   97     9  1 26 15 A> 1
    98     8  1 26 15 <A 2
+  103     3  1 26 <A 26
   104     4  1 25 1 A> 26
+  110    10  1 25 17 A>
   111    11  1 25 18 B>
   112    10  1 25 18 <A 3
+  120     2  1 25 <A 28 3
   121     3  1 24 1 A> 28 3
+  129    11  1 24 19 A> 3
   130    10  1 24 19 <A 1
+  139     1  1 24 <A 29 1
   140     2  1 23 1 A> 29 1
+  149    11  1 23 110 A> 1
   150    10  1 23 110 <A 2
+  160     0  1 23 <A 211
   161     1  1 2 2 1 A> 211
+  172    12  1 2 2 112 A>
   173    13  1 2 2 113 B>
   174    12  1 2 2 113 <A 3
+  187    -1  1 2 2 <A 213 3
   188     0  1 2 1 A> 213 3
+  201    13  1 2 114 A> 3
   202    12  1 2 114 <A 1
+  216    -2  1 2 <A 214 1
   217    -1  1 1 A> 214 1
+  231    13  116 A> 1
   232    12  116 <A 2
+  248    -4  <A 217
   249    -3  1 B> 217
+  266    14  1 217 B>
   267    13  1 217 <A 3
   268    14  1 216 1 A> 3
   269    13  1 216 1 <A 1
   270    12  1 216 <A 2 1
   271    13  1 215 1 A> 2 1
   272    14  1 215 1 1 A> 1
   273    13  1 215 1 1 <A 2
+  275    11  1 215 <A 23
   276    12  1 214 1 A> 23
+  279    15  1 214 14 A>
   280    16  1 214 15 B>
   281    15  1 214 15 <A 3
+  286    10  1 214 <A 25 3
   287    11  1 213 1 A> 25 3
+  292    16  1 213 16 A> 3
   293    15  1 213 16 <A 1
+  299     9  1 213 <A 26 1
   300    10  1 212 1 A> 26 1
+  306    16  1 212 17 A> 1
   307    15  1 212 17 <A 2
+  314     8  1 212 <A 28
   315     9  1 211 1 A> 28
+  323    17  1 211 19 A>
   324    18  1 211 110 B>
   325    17  1 211 110 <A 3
+  335     7  1 211 <A 210 3
   336     8  1 210 1 A> 210 3
+  346    18  1 210 111 A> 3
   347    17  1 210 111 <A 1
+  358     6  1 210 <A 211 1
   359     7  1 29 1 A> 211 1
+  370    18  1 29 112 A> 1
   371    17  1 29 112 <A 2
+  383     5  1 29 <A 213
   384     6  1 28 1 A> 213
+  397    19  1 28 114 A>
   398    20  1 28 115 B>
   399    19  1 28 115 <A 3
+  414     4  1 28 <A 215 3
   415     5  1 27 1 A> 215 3
+  430    20  1 27 116 A> 3
   431    19  1 27 116 <A 1
+  447     3  1 27 <A 216 1
   448     4  1 26 1 A> 216 1
+  464    20  1 26 117 A> 1
   465    19  1 26 117 <A 2
+  482     2  1 26 <A 218
   483     3  1 25 1 A> 218
+  501    21  1 25 119 A>
   502    22  1 25 120 B>
   503    21  1 25 120 <A 3
+  523     1  1 25 <A 220 3
   524     2  1 24 1 A> 220 3
+  544    22  1 24 121 A> 3
   545    21  1 24 121 <A 1
+  566     0  1 24 <A 221 1
   567     1  1 23 1 A> 221 1
+  588    22  1 23 122 A> 1
   589    21  1 23 122 <A 2
+  611    -1  1 23 <A 223
   612     0  1 2 2 1 A> 223
+  635    23  1 2 2 124 A>
   636    24  1 2 2 125 B>
   637    23  1 2 2 125 <A 3
+  662    -2  1 2 2 <A 225 3
   663    -1  1 2 1 A> 225 3
+  688    24  1 2 126 A> 3
   689    23  1 2 126 <A 1
+  715    -3  1 2 <A 226 1
   716    -2  1 1 A> 226 1
+  742    24  128 A> 1
   743    23  128 <A 2
+  771    -5  <A 229
   772    -4  1 B> 229
+  801    25  1 229 B>
   802    24  1 229 <A 3
   803    25  1 228 1 A> 3
   804    24  1 228 1 <A 1
   805    23  1 228 <A 2 1
   806    24  1 227 1 A> 2 1
   807    25  1 227 1 1 A> 1
   808    24  1 227 1 1 <A 2
+  810    22  1 227 <A 23
   811    23  1 226 1 A> 23
+  814    26  1 226 14 A>
   815    27  1 226 15 B>
   816    26  1 226 15 <A 3
+  821    21  1 226 <A 25 3
   822    22  1 225 1 A> 25 3
+  827    27  1 225 16 A> 3
   828    26  1 225 16 <A 1
+  834    20  1 225 <A 26 1
   835    21  1 224 1 A> 26 1
+  841    27  1 224 17 A> 1
   842    26  1 224 17 <A 2
+  849    19  1 224 <A 28
   850    20  1 223 1 A> 28
+  858    28  1 223 19 A>
   859    29  1 223 110 B>
   860    28  1 223 110 <A 3
+  870    18  1 223 <A 210 3
   871    19  1 222 1 A> 210 3
+  881    29  1 222 111 A> 3
   882    28  1 222 111 <A 1
+  893    17  1 222 <A 211 1
   894    18  1 221 1 A> 211 1
+  905    29  1 221 112 A> 1
   906    28  1 221 112 <A 2
+  918    16  1 221 <A 213
   919    17  1 220 1 A> 213
+  932    30  1 220 114 A>
   933    31  1 220 115 B>
   934    30  1 220 115 <A 3
+  949    15  1 220 <A 215 3
   950    16  1 219 1 A> 215 3
+  965    31  1 219 116 A> 3
   966    30  1 219 116 <A 1
+  982    14  1 219 <A 216 1
   983    15  1 218 1 A> 216 1
+  999    31  1 218 117 A> 1
  1000    30  1 218 117 <A 2
+ 1017    13  1 218 <A 218
  1018    14  1 217 1 A> 218
+ 1036    32  1 217 119 A>

After 1036 steps (201 lines): state = A.
Produced     37 nonzeros.
Tape index 32, scanned [-5 .. 31].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 0 on 1 on 2 on 3
A 956 20 468 454 14 0 2 6 31
B 80 17   60 3 1   4 5
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:12:34 CEST 2010