Comment: This TM produces 84 nonzeros in 6445 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
| A | 1RB | 2LA | 1RA | 1LA | 1 | right | B | 2 | left | A | 1 | right | A | 1 | left | A |
| B | 3LA | 1RH | 2RB | 2LA | 3 | left | A | 1 | right | H | 2 | right | B | 2 | left | A |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <A 3
3 -1 <A 2 3
4 0 1 B> 2 3
5 1 1 2 B> 3
6 0 1 2 <A 2
7 1 1 1 A> 2
8 2 13 A>
9 3 14 B>
10 2 14 <A 3
+ 14 -2 <A 24 3
15 -1 1 B> 24 3
+ 19 3 1 24 B> 3
20 2 1 24 <A 2
21 3 1 23 1 A> 2
22 4 1 23 1 1 A>
23 5 1 23 13 B>
24 4 1 23 13 <A 3
+ 27 1 1 23 <A 23 3
28 2 1 2 2 1 A> 23 3
+ 31 5 1 2 2 14 A> 3
32 4 1 2 2 14 <A 1
+ 36 0 1 2 2 <A 24 1
37 1 1 2 1 A> 24 1
+ 41 5 1 2 15 A> 1
42 4 1 2 15 <A 2
+ 47 -1 1 2 <A 26
48 0 1 1 A> 26
+ 54 6 18 A>
55 7 19 B>
56 6 19 <A 3
+ 65 -3 <A 29 3
66 -2 1 B> 29 3
+ 75 7 1 29 B> 3
76 6 1 29 <A 2
77 7 1 28 1 A> 2
78 8 1 28 1 1 A>
79 9 1 28 13 B>
80 8 1 28 13 <A 3
+ 83 5 1 28 <A 23 3
84 6 1 27 1 A> 23 3
+ 87 9 1 27 14 A> 3
88 8 1 27 14 <A 1
+ 92 4 1 27 <A 24 1
93 5 1 26 1 A> 24 1
+ 97 9 1 26 15 A> 1
98 8 1 26 15 <A 2
+ 103 3 1 26 <A 26
104 4 1 25 1 A> 26
+ 110 10 1 25 17 A>
111 11 1 25 18 B>
112 10 1 25 18 <A 3
+ 120 2 1 25 <A 28 3
121 3 1 24 1 A> 28 3
+ 129 11 1 24 19 A> 3
130 10 1 24 19 <A 1
+ 139 1 1 24 <A 29 1
140 2 1 23 1 A> 29 1
+ 149 11 1 23 110 A> 1
150 10 1 23 110 <A 2
+ 160 0 1 23 <A 211
161 1 1 2 2 1 A> 211
+ 172 12 1 2 2 112 A>
173 13 1 2 2 113 B>
174 12 1 2 2 113 <A 3
+ 187 -1 1 2 2 <A 213 3
188 0 1 2 1 A> 213 3
+ 201 13 1 2 114 A> 3
202 12 1 2 114 <A 1
+ 216 -2 1 2 <A 214 1
217 -1 1 1 A> 214 1
+ 231 13 116 A> 1
232 12 116 <A 2
+ 248 -4 <A 217
249 -3 1 B> 217
+ 266 14 1 217 B>
267 13 1 217 <A 3
268 14 1 216 1 A> 3
269 13 1 216 1 <A 1
270 12 1 216 <A 2 1
271 13 1 215 1 A> 2 1
272 14 1 215 1 1 A> 1
273 13 1 215 1 1 <A 2
+ 275 11 1 215 <A 23
276 12 1 214 1 A> 23
+ 279 15 1 214 14 A>
280 16 1 214 15 B>
281 15 1 214 15 <A 3
+ 286 10 1 214 <A 25 3
287 11 1 213 1 A> 25 3
+ 292 16 1 213 16 A> 3
293 15 1 213 16 <A 1
+ 299 9 1 213 <A 26 1
300 10 1 212 1 A> 26 1
+ 306 16 1 212 17 A> 1
307 15 1 212 17 <A 2
+ 314 8 1 212 <A 28
315 9 1 211 1 A> 28
+ 323 17 1 211 19 A>
324 18 1 211 110 B>
325 17 1 211 110 <A 3
+ 335 7 1 211 <A 210 3
336 8 1 210 1 A> 210 3
+ 346 18 1 210 111 A> 3
347 17 1 210 111 <A 1
+ 358 6 1 210 <A 211 1
359 7 1 29 1 A> 211 1
+ 370 18 1 29 112 A> 1
371 17 1 29 112 <A 2
+ 383 5 1 29 <A 213
384 6 1 28 1 A> 213
+ 397 19 1 28 114 A>
398 20 1 28 115 B>
399 19 1 28 115 <A 3
+ 414 4 1 28 <A 215 3
415 5 1 27 1 A> 215 3
+ 430 20 1 27 116 A> 3
431 19 1 27 116 <A 1
+ 447 3 1 27 <A 216 1
448 4 1 26 1 A> 216 1
+ 464 20 1 26 117 A> 1
465 19 1 26 117 <A 2
+ 482 2 1 26 <A 218
483 3 1 25 1 A> 218
+ 501 21 1 25 119 A>
502 22 1 25 120 B>
503 21 1 25 120 <A 3
+ 523 1 1 25 <A 220 3
524 2 1 24 1 A> 220 3
+ 544 22 1 24 121 A> 3
545 21 1 24 121 <A 1
+ 566 0 1 24 <A 221 1
567 1 1 23 1 A> 221 1
+ 588 22 1 23 122 A> 1
589 21 1 23 122 <A 2
+ 611 -1 1 23 <A 223
612 0 1 2 2 1 A> 223
+ 635 23 1 2 2 124 A>
636 24 1 2 2 125 B>
637 23 1 2 2 125 <A 3
+ 662 -2 1 2 2 <A 225 3
663 -1 1 2 1 A> 225 3
+ 688 24 1 2 126 A> 3
689 23 1 2 126 <A 1
+ 715 -3 1 2 <A 226 1
716 -2 1 1 A> 226 1
+ 742 24 128 A> 1
743 23 128 <A 2
+ 771 -5 <A 229
772 -4 1 B> 229
+ 801 25 1 229 B>
802 24 1 229 <A 3
803 25 1 228 1 A> 3
804 24 1 228 1 <A 1
805 23 1 228 <A 2 1
806 24 1 227 1 A> 2 1
807 25 1 227 1 1 A> 1
808 24 1 227 1 1 <A 2
+ 810 22 1 227 <A 23
811 23 1 226 1 A> 23
+ 814 26 1 226 14 A>
815 27 1 226 15 B>
816 26 1 226 15 <A 3
+ 821 21 1 226 <A 25 3
822 22 1 225 1 A> 25 3
+ 827 27 1 225 16 A> 3
828 26 1 225 16 <A 1
+ 834 20 1 225 <A 26 1
835 21 1 224 1 A> 26 1
+ 841 27 1 224 17 A> 1
842 26 1 224 17 <A 2
+ 849 19 1 224 <A 28
850 20 1 223 1 A> 28
+ 858 28 1 223 19 A>
859 29 1 223 110 B>
860 28 1 223 110 <A 3
+ 870 18 1 223 <A 210 3
871 19 1 222 1 A> 210 3
+ 881 29 1 222 111 A> 3
882 28 1 222 111 <A 1
+ 893 17 1 222 <A 211 1
894 18 1 221 1 A> 211 1
+ 905 29 1 221 112 A> 1
906 28 1 221 112 <A 2
+ 918 16 1 221 <A 213
919 17 1 220 1 A> 213
+ 932 30 1 220 114 A>
933 31 1 220 115 B>
934 30 1 220 115 <A 3
+ 949 15 1 220 <A 215 3
950 16 1 219 1 A> 215 3
+ 965 31 1 219 116 A> 3
966 30 1 219 116 <A 1
+ 982 14 1 219 <A 216 1
983 15 1 218 1 A> 216 1
+ 999 31 1 218 117 A> 1
1000 30 1 218 117 <A 2
+ 1017 13 1 218 <A 218
1018 14 1 217 1 A> 218
+ 1036 32 1 217 119 A>
After 1036 steps (201 lines): state = A.
Produced 37 nonzeros.
Tape index 32, scanned [-5 .. 31].
| State | Count | Execution count | First in step | ||||||
|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
| A | 956 | 20 | 468 | 454 | 14 | 0 | 2 | 6 | 31 |
| B | 80 | 17 | 60 | 3 | 1 | 4 | 5 | ||