Comment: This TM produces 84 nonzeros in 6445 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
A | 1RB | 2LA | 1RA | 1LA | 1 | right | B | 2 | left | A | 1 | right | A | 1 | left | A |
B | 3LA | 1RH | 2RB | 2LA | 3 | left | A | 1 | right | H | 2 | right | B | 2 | left | A |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <A 3 3 -1 <A 2 3 4 0 1 B> 2 3 5 1 1 2 B> 3 6 0 1 2 <A 2 7 1 1 1 A> 2 8 2 13 A> 9 3 14 B> 10 2 14 <A 3 + 14 -2 <A 24 3 15 -1 1 B> 24 3 + 19 3 1 24 B> 3 20 2 1 24 <A 2 21 3 1 23 1 A> 2 22 4 1 23 1 1 A> 23 5 1 23 13 B> 24 4 1 23 13 <A 3 + 27 1 1 23 <A 23 3 28 2 1 2 2 1 A> 23 3 + 31 5 1 2 2 14 A> 3 32 4 1 2 2 14 <A 1 + 36 0 1 2 2 <A 24 1 37 1 1 2 1 A> 24 1 + 41 5 1 2 15 A> 1 42 4 1 2 15 <A 2 + 47 -1 1 2 <A 26 48 0 1 1 A> 26 + 54 6 18 A> 55 7 19 B> 56 6 19 <A 3 + 65 -3 <A 29 3 66 -2 1 B> 29 3 + 75 7 1 29 B> 3 76 6 1 29 <A 2 77 7 1 28 1 A> 2 78 8 1 28 1 1 A> 79 9 1 28 13 B> 80 8 1 28 13 <A 3 + 83 5 1 28 <A 23 3 84 6 1 27 1 A> 23 3 + 87 9 1 27 14 A> 3 88 8 1 27 14 <A 1 + 92 4 1 27 <A 24 1 93 5 1 26 1 A> 24 1 + 97 9 1 26 15 A> 1 98 8 1 26 15 <A 2 + 103 3 1 26 <A 26 104 4 1 25 1 A> 26 + 110 10 1 25 17 A> 111 11 1 25 18 B> 112 10 1 25 18 <A 3 + 120 2 1 25 <A 28 3 121 3 1 24 1 A> 28 3 + 129 11 1 24 19 A> 3 130 10 1 24 19 <A 1 + 139 1 1 24 <A 29 1 140 2 1 23 1 A> 29 1 + 149 11 1 23 110 A> 1 150 10 1 23 110 <A 2 + 160 0 1 23 <A 211 161 1 1 2 2 1 A> 211 + 172 12 1 2 2 112 A> 173 13 1 2 2 113 B> 174 12 1 2 2 113 <A 3 + 187 -1 1 2 2 <A 213 3 188 0 1 2 1 A> 213 3 + 201 13 1 2 114 A> 3 202 12 1 2 114 <A 1 + 216 -2 1 2 <A 214 1 217 -1 1 1 A> 214 1 + 231 13 116 A> 1 232 12 116 <A 2 + 248 -4 <A 217 249 -3 1 B> 217 + 266 14 1 217 B> 267 13 1 217 <A 3 268 14 1 216 1 A> 3 269 13 1 216 1 <A 1 270 12 1 216 <A 2 1 271 13 1 215 1 A> 2 1 272 14 1 215 1 1 A> 1 273 13 1 215 1 1 <A 2 + 275 11 1 215 <A 23 276 12 1 214 1 A> 23 + 279 15 1 214 14 A> 280 16 1 214 15 B> 281 15 1 214 15 <A 3 + 286 10 1 214 <A 25 3 287 11 1 213 1 A> 25 3 + 292 16 1 213 16 A> 3 293 15 1 213 16 <A 1 + 299 9 1 213 <A 26 1 300 10 1 212 1 A> 26 1 + 306 16 1 212 17 A> 1 307 15 1 212 17 <A 2 + 314 8 1 212 <A 28 315 9 1 211 1 A> 28 + 323 17 1 211 19 A> 324 18 1 211 110 B> 325 17 1 211 110 <A 3 + 335 7 1 211 <A 210 3 336 8 1 210 1 A> 210 3 + 346 18 1 210 111 A> 3 347 17 1 210 111 <A 1 + 358 6 1 210 <A 211 1 359 7 1 29 1 A> 211 1 + 370 18 1 29 112 A> 1 371 17 1 29 112 <A 2 + 383 5 1 29 <A 213 384 6 1 28 1 A> 213 + 397 19 1 28 114 A> 398 20 1 28 115 B> 399 19 1 28 115 <A 3 + 414 4 1 28 <A 215 3 415 5 1 27 1 A> 215 3 + 430 20 1 27 116 A> 3 431 19 1 27 116 <A 1 + 447 3 1 27 <A 216 1 448 4 1 26 1 A> 216 1 + 464 20 1 26 117 A> 1 465 19 1 26 117 <A 2 + 482 2 1 26 <A 218 483 3 1 25 1 A> 218 + 501 21 1 25 119 A> 502 22 1 25 120 B> 503 21 1 25 120 <A 3 + 523 1 1 25 <A 220 3 524 2 1 24 1 A> 220 3 + 544 22 1 24 121 A> 3 545 21 1 24 121 <A 1 + 566 0 1 24 <A 221 1 567 1 1 23 1 A> 221 1 + 588 22 1 23 122 A> 1 589 21 1 23 122 <A 2 + 611 -1 1 23 <A 223 612 0 1 2 2 1 A> 223 + 635 23 1 2 2 124 A> 636 24 1 2 2 125 B> 637 23 1 2 2 125 <A 3 + 662 -2 1 2 2 <A 225 3 663 -1 1 2 1 A> 225 3 + 688 24 1 2 126 A> 3 689 23 1 2 126 <A 1 + 715 -3 1 2 <A 226 1 716 -2 1 1 A> 226 1 + 742 24 128 A> 1 743 23 128 <A 2 + 771 -5 <A 229 772 -4 1 B> 229 + 801 25 1 229 B> 802 24 1 229 <A 3 803 25 1 228 1 A> 3 804 24 1 228 1 <A 1 805 23 1 228 <A 2 1 806 24 1 227 1 A> 2 1 807 25 1 227 1 1 A> 1 808 24 1 227 1 1 <A 2 + 810 22 1 227 <A 23 811 23 1 226 1 A> 23 + 814 26 1 226 14 A> 815 27 1 226 15 B> 816 26 1 226 15 <A 3 + 821 21 1 226 <A 25 3 822 22 1 225 1 A> 25 3 + 827 27 1 225 16 A> 3 828 26 1 225 16 <A 1 + 834 20 1 225 <A 26 1 835 21 1 224 1 A> 26 1 + 841 27 1 224 17 A> 1 842 26 1 224 17 <A 2 + 849 19 1 224 <A 28 850 20 1 223 1 A> 28 + 858 28 1 223 19 A> 859 29 1 223 110 B> 860 28 1 223 110 <A 3 + 870 18 1 223 <A 210 3 871 19 1 222 1 A> 210 3 + 881 29 1 222 111 A> 3 882 28 1 222 111 <A 1 + 893 17 1 222 <A 211 1 894 18 1 221 1 A> 211 1 + 905 29 1 221 112 A> 1 906 28 1 221 112 <A 2 + 918 16 1 221 <A 213 919 17 1 220 1 A> 213 + 932 30 1 220 114 A> 933 31 1 220 115 B> 934 30 1 220 115 <A 3 + 949 15 1 220 <A 215 3 950 16 1 219 1 A> 215 3 + 965 31 1 219 116 A> 3 966 30 1 219 116 <A 1 + 982 14 1 219 <A 216 1 983 15 1 218 1 A> 216 1 + 999 31 1 218 117 A> 1 1000 30 1 218 117 <A 2 + 1017 13 1 218 <A 218 1018 14 1 217 1 A> 218 + 1036 32 1 217 119 A> After 1036 steps (201 lines): state = A. Produced 37 nonzeros. Tape index 32, scanned [-5 .. 31].
State | Count | Execution count | First in step | ||||||
---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
A | 956 | 20 | 468 | 454 | 14 | 0 | 2 | 6 | 31 |
B | 80 | 17 | 60 | 3 | 1 | 4 | 5 |