Comment: This TM produces >2.4x10^26 nonzeros in >5.7x10^52 steps. Comment: If started in state B it will run for one more step Comment: ... but still generate the same number of non-zeros. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
A | 1RB | 1LA | 1LB | 1RA | 1 | right | B | 1 | left | A | 1 | left | B | 1 | right | A |
B | 0LA | 2RB | 2LC | 1RH | 0 | left | A | 2 | right | B | 2 | left | C | 1 | right | H |
C | 3RB | 2LB | 1RC | 0RC | 3 | right | B | 2 | left | B | 1 | right | C | 0 | right | C |
Simulation is done just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. The same TM as 1-bck-macro machine. The same TM as 1-bck-macro machine with pure additive config-TRs. Step Tpos St Tape contents 0 0 A . . . 0 1 1 B . . . 10 2 0 A . . . 10 3 -1 A . . .010 4 0 B . . .110 5 1 B . . .120 6 0 A . . .120 7 -1 B . . .110 8 0 B . . .210 9 1 B . . .220 10 0 A . . .220 11 -1 B . . .210 12 -2 C . . 0210 13 -1 B . . 3210 14 -2 C . . 3210 15 -1 C . . 0210 16 0 C . . 0110 17 -1 B . . 0120 18 0 B . . 0220 19 -1 C . . 0220 20 0 C . . 0120 21 1 C . . 0110 22 2 B . . 01130 23 1 A . . 01130 24 2 A . . 01110 25 3 B . . 011110 26 2 A . . 011110 27 1 A . . 011110 28 0 A . . 011110 29 -1 A . . 011110 30 -2 A . . 011110 31 -1 B . . 111110 32 0 B . . 121110 33 1 B . . 122110 34 2 B . . 122210 35 3 B . . 122220 36 2 A . . 122220 37 1 B . . 122210 38 0 C . . 122210 39 1 C . . 121210 40 2 C . . 121110 41 1 B . . 121120 42 2 B . . 121220 43 1 C . . 121220 44 2 C . . 121120 45 3 C . . 121110 46 4 B . . 1211130 47 3 A . . 1211130 48 4 A . . 1211110 49 5 B . . 12111110 50 4 A . . 12111110 51 3 A . . 12111110 52 2 A . . 12111110 53 1 A . . 12111110 54 0 A . . 12111110 55 -1 A . . 12111110 56 -2 B . . 11111110 57 -1 B . . 21111110 58 0 B . . 22111110 59 1 B . . 22211110 60 2 B . . 22221110 61 3 B . . 22222110 62 4 B . . 22222210 63 5 B . . 22222220 64 4 A . . 22222220 65 3 B . . 22222210 66 2 C . . 22222210 67 3 C . . 22221210 68 4 C . . 22221110 69 3 B . . 22221120 70 4 B . . 22221220 71 3 C . . 22221220 72 4 C . . 22221120 73 5 C . . 22221110 74 6 B . . 222211130 75 5 A . . 222211130 76 6 A . . 222211110 77 7 B . . 2222111110 78 6 A . . 2222111110 79 5 A . . 2222111110 80 4 A . . 2222111110 81 3 A . . 2222111110 82 2 A . . 2222111110 83 1 A . . 2222111110 84 0 B . . 2221111110 85 -1 C . . 2221111110 86 0 C . . 2121111110 87 1 C . . 2111111110 88 0 B . . 2112111110 89 1 B . . 2122111110 90 0 C . . 2122111110 91 1 C . . 2112111110 92 2 C . . 2111111110 93 1 B . . 2111211110 94 2 B . . 2112211110 95 1 C . . 2112211110 96 2 C . . 2111211110 97 3 C . . 2111111110 98 2 B . . 2111121110 99 3 B . . 2111221110 100 2 C . . 2111221110 101 3 C . . 2111121110 102 4 C . . 2111111110 103 3 B . . 2111112110 104 4 B . . 2111122110 105 3 C . . 2111122110 106 4 C . . 2111112110 107 5 C . . 2111111110 108 4 B . . 2111111210 109 5 B . . 2111112210 110 4 C . . 2111112210 111 5 C . . 2111111210 112 6 C . . 2111111110 113 5 B . . 2111111120 114 6 B . . 2111111220 115 5 C . . 2111111220 116 6 C . . 2111111120 117 7 C . . 2111111110 118 8 B . . 21111111130 119 7 A . . 21111111130 120 8 A . . 21111111110 121 9 B . . 211111111110 122 8 A . . 211111111110 123 7 A . . 211111111110 124 6 A . . 211111111110 125 5 A . . 211111111110 126 4 A . . 211111111110 127 3 A . . 211111111110 128 2 A . . 211111111110 129 1 A . . 211111111110 130 0 A . . 211111111110 131 -1 A . . 211111111110 132 -2 A . . 211111111110 133 -3 B . .0111111111110 134 -4 A . 00111111111110 135 -3 B . 10111111111110 136 -4 A . 10111111111110 137 -5 A .010111111111110 138 -4 B .110111111111110 139 -3 B .120111111111110 140 -4 A .120111111111110 141 -5 B .110111111111110 142 -4 B .210111111111110 143 -3 B .220111111111110 144 -4 A .220111111111110 145 -5 B .210111111111110 146 -6 C 0210111111111110 147 -5 B 3210111111111110 148 -6 C 3210111111111110 149 -5 C 0210111111111110 150 -4 C 0110111111111110 151 -5 B 0120111111111110 152 -4 B 0220111111111110 153 -5 C 0220111111111110 154 -4 C 0120111111111110 155 -3 C 0110111111111110 156 -2 B 0113111111111110 157 -1 B 0113211111111110 158 0 B 0113221111111110 159 1 B 0113222111111110 160 2 B 0113222211111110 161 3 B 0113222221111110 162 4 B 0113222222111110 163 5 B 0113222222211110 164 6 B 0113222222221110 165 7 B 0113222222222110 166 8 B 0113222222222210 167 9 B 0113222222222220 168 8 A 0113222222222220 169 7 B 0113222222222210 170 6 C 0113222222222210 171 7 C 0113222222221210 172 8 C 0113222222221110 173 7 B 0113222222221120 174 8 B 0113222222221220 175 7 C 0113222222221220 176 8 C 0113222222221120 177 9 C 0113222222221110 178 10 B 01132222222211130 179 9 A 01132222222211130 180 10 A 01132222222211110 181 11 B 011322222222111110 182 10 A 011322222222111110 183 9 A 011322222222111110 184 8 A 011322222222111110 185 7 A 011322222222111110 186 6 A 011322222222111110 187 5 A 011322222222111110 188 4 B 011322222221111110 189 3 C 011322222221111110 190 4 C 011322222121111110 191 5 C 011322222111111110 192 4 B 011322222112111110 193 5 B 011322222122111110 194 4 C 011322222122111110 195 5 C 011322222112111110 196 6 C 011322222111111110 197 5 B 011322222111211110 198 6 B 011322222112211110 199 5 C 011322222112211110 200 6 C 011322222111211110 After 200 steps (201 lines): state = C. Produced 16 nonzeros. Tape index 6, scanned [-6 .. 11].
State | Count | Execution count | First in step | ||||||
---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
A | 57 | 10 | 31 | 11 | 5 | 0 | 2 | 6 | 23 |
B | 83 | 20 | 41 | 22 | 1 | 4 | 11 | ||
C | 60 | 8 | 13 | 37 | 2 | 12 | 16 | 15 | 14 |