Comment: This TM produces >2.4x10^26 nonzeros in >5.7x10^52 steps. Comment: If started in state B it will run for one more step Comment: ... but still generate the same number of non-zeros. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
| A | 1RB | 1LA | 1LB | 1RA | 1 | right | B | 1 | left | A | 1 | left | B | 1 | right | A |
| B | 0LA | 2RB | 2LC | 1RH | 0 | left | A | 2 | right | B | 2 | left | C | 1 | right | H |
| C | 3RB | 2LB | 1RC | 0RC | 3 | right | B | 2 | left | B | 1 | right | C | 0 | right | C |
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.
Step Tpos St Tape contents
0 0 A . . . 0
1 1 B . . . 10
2 0 A . . . 10
3 -1 A . . .010
4 0 B . . .110
5 1 B . . .120
6 0 A . . .120
7 -1 B . . .110
8 0 B . . .210
9 1 B . . .220
10 0 A . . .220
11 -1 B . . .210
12 -2 C . . 0210
13 -1 B . . 3210
14 -2 C . . 3210
15 -1 C . . 0210
16 0 C . . 0110
17 -1 B . . 0120
18 0 B . . 0220
19 -1 C . . 0220
20 0 C . . 0120
21 1 C . . 0110
22 2 B . . 01130
23 1 A . . 01130
24 2 A . . 01110
25 3 B . . 011110
26 2 A . . 011110
27 1 A . . 011110
28 0 A . . 011110
29 -1 A . . 011110
30 -2 A . . 011110
31 -1 B . . 111110
32 0 B . . 121110
33 1 B . . 122110
34 2 B . . 122210
35 3 B . . 122220
36 2 A . . 122220
37 1 B . . 122210
38 0 C . . 122210
39 1 C . . 121210
40 2 C . . 121110
41 1 B . . 121120
42 2 B . . 121220
43 1 C . . 121220
44 2 C . . 121120
45 3 C . . 121110
46 4 B . . 1211130
47 3 A . . 1211130
48 4 A . . 1211110
49 5 B . . 12111110
50 4 A . . 12111110
51 3 A . . 12111110
52 2 A . . 12111110
53 1 A . . 12111110
54 0 A . . 12111110
55 -1 A . . 12111110
56 -2 B . . 11111110
57 -1 B . . 21111110
58 0 B . . 22111110
59 1 B . . 22211110
60 2 B . . 22221110
61 3 B . . 22222110
62 4 B . . 22222210
63 5 B . . 22222220
64 4 A . . 22222220
65 3 B . . 22222210
66 2 C . . 22222210
67 3 C . . 22221210
68 4 C . . 22221110
69 3 B . . 22221120
70 4 B . . 22221220
71 3 C . . 22221220
72 4 C . . 22221120
73 5 C . . 22221110
74 6 B . . 222211130
75 5 A . . 222211130
76 6 A . . 222211110
77 7 B . . 2222111110
78 6 A . . 2222111110
79 5 A . . 2222111110
80 4 A . . 2222111110
81 3 A . . 2222111110
82 2 A . . 2222111110
83 1 A . . 2222111110
84 0 B . . 2221111110
85 -1 C . . 2221111110
86 0 C . . 2121111110
87 1 C . . 2111111110
88 0 B . . 2112111110
89 1 B . . 2122111110
90 0 C . . 2122111110
91 1 C . . 2112111110
92 2 C . . 2111111110
93 1 B . . 2111211110
94 2 B . . 2112211110
95 1 C . . 2112211110
96 2 C . . 2111211110
97 3 C . . 2111111110
98 2 B . . 2111121110
99 3 B . . 2111221110
100 2 C . . 2111221110
101 3 C . . 2111121110
102 4 C . . 2111111110
103 3 B . . 2111112110
104 4 B . . 2111122110
105 3 C . . 2111122110
106 4 C . . 2111112110
107 5 C . . 2111111110
108 4 B . . 2111111210
109 5 B . . 2111112210
110 4 C . . 2111112210
111 5 C . . 2111111210
112 6 C . . 2111111110
113 5 B . . 2111111120
114 6 B . . 2111111220
115 5 C . . 2111111220
116 6 C . . 2111111120
117 7 C . . 2111111110
118 8 B . . 21111111130
119 7 A . . 21111111130
120 8 A . . 21111111110
121 9 B . . 211111111110
122 8 A . . 211111111110
123 7 A . . 211111111110
124 6 A . . 211111111110
125 5 A . . 211111111110
126 4 A . . 211111111110
127 3 A . . 211111111110
128 2 A . . 211111111110
129 1 A . . 211111111110
130 0 A . . 211111111110
131 -1 A . . 211111111110
132 -2 A . . 211111111110
133 -3 B . .0111111111110
134 -4 A . 00111111111110
135 -3 B . 10111111111110
136 -4 A . 10111111111110
137 -5 A .010111111111110
138 -4 B .110111111111110
139 -3 B .120111111111110
140 -4 A .120111111111110
141 -5 B .110111111111110
142 -4 B .210111111111110
143 -3 B .220111111111110
144 -4 A .220111111111110
145 -5 B .210111111111110
146 -6 C 0210111111111110
147 -5 B 3210111111111110
148 -6 C 3210111111111110
149 -5 C 0210111111111110
150 -4 C 0110111111111110
151 -5 B 0120111111111110
152 -4 B 0220111111111110
153 -5 C 0220111111111110
154 -4 C 0120111111111110
155 -3 C 0110111111111110
156 -2 B 0113111111111110
157 -1 B 0113211111111110
158 0 B 0113221111111110
159 1 B 0113222111111110
160 2 B 0113222211111110
161 3 B 0113222221111110
162 4 B 0113222222111110
163 5 B 0113222222211110
164 6 B 0113222222221110
165 7 B 0113222222222110
166 8 B 0113222222222210
167 9 B 0113222222222220
168 8 A 0113222222222220
169 7 B 0113222222222210
170 6 C 0113222222222210
171 7 C 0113222222221210
172 8 C 0113222222221110
173 7 B 0113222222221120
174 8 B 0113222222221220
175 7 C 0113222222221220
176 8 C 0113222222221120
177 9 C 0113222222221110
178 10 B 01132222222211130
179 9 A 01132222222211130
180 10 A 01132222222211110
181 11 B 011322222222111110
182 10 A 011322222222111110
183 9 A 011322222222111110
184 8 A 011322222222111110
185 7 A 011322222222111110
186 6 A 011322222222111110
187 5 A 011322222222111110
188 4 B 011322222221111110
189 3 C 011322222221111110
190 4 C 011322222121111110
191 5 C 011322222111111110
192 4 B 011322222112111110
193 5 B 011322222122111110
194 4 C 011322222122111110
195 5 C 011322222112111110
196 6 C 011322222111111110
197 5 B 011322222111211110
198 6 B 011322222112211110
199 5 C 011322222112211110
200 6 C 011322222111211110
After 200 steps (201 lines): state = C.
Produced 16 nonzeros.
Tape index 6, scanned [-6 .. 11].
| State | Count | Execution count | First in step | ||||||
|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
| A | 57 | 10 | 31 | 11 | 5 | 0 | 2 | 6 | 23 |
| B | 83 | 20 | 41 | 22 | 1 | 4 | 11 | ||
| C | 60 | 8 | 13 | 37 | 2 | 12 | 16 | 15 | 14 |