3-state 4-symbol #b (T.J. & S. Ligocki)

Comment: This TM produces >2.4x10^26 nonzeros in >5.7x10^52 steps.
Comment: If started in state B it will run for one more step
Comment: ... but still generate the same number of non-zeros.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on 0 on 1 on 2 on 3
Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 1LA 1LB 1RA 1 right B 1 left A 1 left B 1 right A
B 0LA 2RB 2LC 1RH 0 left A 2 right B 2 left C 1 right H
C 3RB 2LB 1RC 0RC 3 right B 2 left B 1 right C 0 right C
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . . 0
     1    1 B . . . 10
     2    0 A . . . 10
     3   -1 A . . .010
     4    0 B . . .110
     5    1 B . . .120
     6    0 A . . .120
     7   -1 B . . .110
     8    0 B . . .210
     9    1 B . . .220
    10    0 A . . .220
    11   -1 B . . .210
    12   -2 C . . 0210
    13   -1 B . . 3210
    14   -2 C . . 3210
    15   -1 C . . 0210
    16    0 C . . 0110
    17   -1 B . . 0120
    18    0 B . . 0220
    19   -1 C . . 0220
    20    0 C . . 0120
    21    1 C . . 0110
    22    2 B . . 01130
    23    1 A . . 01130
    24    2 A . . 01110
    25    3 B . . 011110
    26    2 A . . 011110
    27    1 A . . 011110
    28    0 A . . 011110
    29   -1 A . . 011110
    30   -2 A . . 011110
    31   -1 B . . 111110
    32    0 B . . 121110
    33    1 B . . 122110
    34    2 B . . 122210
    35    3 B . . 122220
    36    2 A . . 122220
    37    1 B . . 122210
    38    0 C . . 122210
    39    1 C . . 121210
    40    2 C . . 121110
    41    1 B . . 121120
    42    2 B . . 121220
    43    1 C . . 121220
    44    2 C . . 121120
    45    3 C . . 121110
    46    4 B . . 1211130
    47    3 A . . 1211130
    48    4 A . . 1211110
    49    5 B . . 12111110
    50    4 A . . 12111110
    51    3 A . . 12111110
    52    2 A . . 12111110
    53    1 A . . 12111110
    54    0 A . . 12111110
    55   -1 A . . 12111110
    56   -2 B . . 11111110
    57   -1 B . . 21111110
    58    0 B . . 22111110
    59    1 B . . 22211110
    60    2 B . . 22221110
    61    3 B . . 22222110
    62    4 B . . 22222210
    63    5 B . . 22222220
    64    4 A . . 22222220
    65    3 B . . 22222210
    66    2 C . . 22222210
    67    3 C . . 22221210
    68    4 C . . 22221110
    69    3 B . . 22221120
    70    4 B . . 22221220
    71    3 C . . 22221220
    72    4 C . . 22221120
    73    5 C . . 22221110
    74    6 B . . 222211130
    75    5 A . . 222211130
    76    6 A . . 222211110
    77    7 B . . 2222111110
    78    6 A . . 2222111110
    79    5 A . . 2222111110
    80    4 A . . 2222111110
    81    3 A . . 2222111110
    82    2 A . . 2222111110
    83    1 A . . 2222111110
    84    0 B . . 2221111110
    85   -1 C . . 2221111110
    86    0 C . . 2121111110
    87    1 C . . 2111111110
    88    0 B . . 2112111110
    89    1 B . . 2122111110
    90    0 C . . 2122111110
    91    1 C . . 2112111110
    92    2 C . . 2111111110
    93    1 B . . 2111211110
    94    2 B . . 2112211110
    95    1 C . . 2112211110
    96    2 C . . 2111211110
    97    3 C . . 2111111110
    98    2 B . . 2111121110
    99    3 B . . 2111221110
   100    2 C . . 2111221110
   101    3 C . . 2111121110
   102    4 C . . 2111111110
   103    3 B . . 2111112110
   104    4 B . . 2111122110
   105    3 C . . 2111122110
   106    4 C . . 2111112110
   107    5 C . . 2111111110
   108    4 B . . 2111111210
   109    5 B . . 2111112210
   110    4 C . . 2111112210
   111    5 C . . 2111111210
   112    6 C . . 2111111110
   113    5 B . . 2111111120
   114    6 B . . 2111111220
   115    5 C . . 2111111220
   116    6 C . . 2111111120
   117    7 C . . 2111111110
   118    8 B . . 21111111130
   119    7 A . . 21111111130
   120    8 A . . 21111111110
   121    9 B . . 211111111110
   122    8 A . . 211111111110
   123    7 A . . 211111111110
   124    6 A . . 211111111110
   125    5 A . . 211111111110
   126    4 A . . 211111111110
   127    3 A . . 211111111110
   128    2 A . . 211111111110
   129    1 A . . 211111111110
   130    0 A . . 211111111110
   131   -1 A . . 211111111110
   132   -2 A . . 211111111110
   133   -3 B . .0111111111110
   134   -4 A . 00111111111110
   135   -3 B . 10111111111110
   136   -4 A . 10111111111110
   137   -5 A .010111111111110
   138   -4 B .110111111111110
   139   -3 B .120111111111110
   140   -4 A .120111111111110
   141   -5 B .110111111111110
   142   -4 B .210111111111110
   143   -3 B .220111111111110
   144   -4 A .220111111111110
   145   -5 B .210111111111110
   146   -6 C 0210111111111110
   147   -5 B 3210111111111110
   148   -6 C 3210111111111110
   149   -5 C 0210111111111110
   150   -4 C 0110111111111110
   151   -5 B 0120111111111110
   152   -4 B 0220111111111110
   153   -5 C 0220111111111110
   154   -4 C 0120111111111110
   155   -3 C 0110111111111110
   156   -2 B 0113111111111110
   157   -1 B 0113211111111110
   158    0 B 0113221111111110
   159    1 B 0113222111111110
   160    2 B 0113222211111110
   161    3 B 0113222221111110
   162    4 B 0113222222111110
   163    5 B 0113222222211110
   164    6 B 0113222222221110
   165    7 B 0113222222222110
   166    8 B 0113222222222210
   167    9 B 0113222222222220
   168    8 A 0113222222222220
   169    7 B 0113222222222210
   170    6 C 0113222222222210
   171    7 C 0113222222221210
   172    8 C 0113222222221110
   173    7 B 0113222222221120
   174    8 B 0113222222221220
   175    7 C 0113222222221220
   176    8 C 0113222222221120
   177    9 C 0113222222221110
   178   10 B 01132222222211130
   179    9 A 01132222222211130
   180   10 A 01132222222211110
   181   11 B 011322222222111110
   182   10 A 011322222222111110
   183    9 A 011322222222111110
   184    8 A 011322222222111110
   185    7 A 011322222222111110
   186    6 A 011322222222111110
   187    5 A 011322222222111110
   188    4 B 011322222221111110
   189    3 C 011322222221111110
   190    4 C 011322222121111110
   191    5 C 011322222111111110
   192    4 B 011322222112111110
   193    5 B 011322222122111110
   194    4 C 011322222122111110
   195    5 C 011322222112111110
   196    6 C 011322222111111110
   197    5 B 011322222111211110
   198    6 B 011322222112211110
   199    5 C 011322222112211110
   200    6 C 011322222111211110

After 200 steps (201 lines): state = C.
Produced     16 nonzeros.
Tape index 6, scanned [-6 .. 11].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 0 on 1 on 2 on 3
A 57 10 31 11 5 0 2 6 23
B 83 20 41 22   1 4 11  
C 60 8 13 37 2 12 16 15 14
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:13:33 CEST 2010