Comment: This TM produces >2.4x10^26 nonzeros in >5.7x10^52 steps. Comment: If started in state B it will run for one more step Comment: ... but still generate the same number of non-zeros. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
A | 1RB | 1LA | 1LB | 1RA | 1 | right | B | 1 | left | A | 1 | left | B | 1 | right | A |
B | 0LA | 2RB | 2LC | 1RH | 0 | left | A | 2 | right | B | 2 | left | C | 1 | right | H |
C | 3RB | 2LB | 1RC | 0RC | 3 | right | B | 2 | left | B | 1 | right | C | 0 | right | C |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-bck-macro machine. The same TM as 1-bck-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <A 3 -1 <A 1 4 0 1 B> 1 5 1 1 2 B> 6 0 1 2 <A 7 -1 1 <B 1 8 0 2 B> 1 9 1 2 2 B> 10 0 2 2 <A 11 -1 2 <B 1 12 -2 <C 2 1 13 -1 3 B> 2 1 14 -2 3 <C 2 1 15 -1 C> 2 1 16 0 1 C> 1 17 -1 1 <B 2 18 0 2 B> 2 19 -1 2 <C 2 20 0 1 C> 2 21 1 1 1 C> 22 2 1 1 3 B> 23 1 1 1 3 <A 24 2 13 A> 25 3 14 B> 26 2 14 <A + 30 -2 <A 14 31 -1 1 B> 14 + 35 3 1 24 B> 36 2 1 24 <A 37 1 1 23 <B 1 38 0 1 2 2 <C 2 1 39 1 1 2 1 C> 2 1 40 2 1 2 1 1 C> 1 41 1 1 2 1 1 <B 2 42 2 1 2 1 2 B> 2 43 1 1 2 1 2 <C 2 44 2 1 2 1 1 C> 2 45 3 1 2 13 C> 46 4 1 2 13 3 B> 47 3 1 2 13 3 <A 48 4 1 2 14 A> 49 5 1 2 15 B> 50 4 1 2 15 <A + 55 -1 1 2 <A 15 56 -2 1 <B 16 57 -1 2 B> 16 + 63 5 27 B> 64 4 27 <A 65 3 26 <B 1 66 2 25 <C 2 1 67 3 24 1 C> 2 1 68 4 24 1 1 C> 1 69 3 24 1 1 <B 2 70 4 24 1 2 B> 2 71 3 24 1 2 <C 2 72 4 24 1 1 C> 2 73 5 24 13 C> 74 6 24 13 3 B> 75 5 24 13 3 <A 76 6 24 14 A> 77 7 24 15 B> 78 6 24 15 <A + 83 1 24 <A 15 84 0 23 <B 16 85 -1 2 2 <C 2 16 86 0 2 1 C> 2 16 87 1 2 1 1 C> 16 88 0 2 1 1 <B 2 15 89 1 2 1 2 B> 2 15 90 0 2 1 2 <C 2 15 91 1 2 1 1 C> 2 15 92 2 2 13 C> 15 93 1 2 13 <B 2 14 94 2 2 1 1 2 B> 2 14 95 1 2 1 1 2 <C 2 14 96 2 2 13 C> 2 14 97 3 2 14 C> 14 98 2 2 14 <B 2 13 99 3 2 13 2 B> 2 13 100 2 2 13 2 <C 2 13 101 3 2 14 C> 2 13 102 4 2 15 C> 13 103 3 2 15 <B 2 1 1 104 4 2 14 2 B> 2 1 1 105 3 2 14 2 <C 2 1 1 106 4 2 15 C> 2 1 1 107 5 2 16 C> 1 1 108 4 2 16 <B 2 1 109 5 2 15 2 B> 2 1 110 4 2 15 2 <C 2 1 111 5 2 16 C> 2 1 112 6 2 17 C> 1 113 5 2 17 <B 2 114 6 2 16 2 B> 2 115 5 2 16 2 <C 2 116 6 2 17 C> 2 117 7 2 18 C> 118 8 2 18 3 B> 119 7 2 18 3 <A 120 8 2 19 A> 121 9 2 110 B> 122 8 2 110 <A + 132 -2 2 <A 110 133 -3 <B 111 134 -4 <A 0 111 135 -3 1 B> 0 111 136 -4 1 <A 0 111 137 -5 <A 1 0 111 138 -4 1 B> 1 0 111 139 -3 1 2 B> 0 111 140 -4 1 2 <A 0 111 141 -5 1 <B 1 0 111 142 -4 2 B> 1 0 111 143 -3 2 2 B> 0 111 144 -4 2 2 <A 0 111 145 -5 2 <B 1 0 111 146 -6 <C 2 1 0 111 147 -5 3 B> 2 1 0 111 148 -6 3 <C 2 1 0 111 149 -5 C> 2 1 0 111 150 -4 1 C> 1 0 111 151 -5 1 <B 2 0 111 152 -4 2 B> 2 0 111 153 -5 2 <C 2 0 111 154 -4 1 C> 2 0 111 155 -3 1 1 C> 0 111 156 -2 1 1 3 B> 111 + 167 9 1 1 3 211 B> 168 8 1 1 3 211 <A 169 7 1 1 3 210 <B 1 170 6 1 1 3 29 <C 2 1 171 7 1 1 3 28 1 C> 2 1 172 8 1 1 3 28 1 1 C> 1 173 7 1 1 3 28 1 1 <B 2 174 8 1 1 3 28 1 2 B> 2 175 7 1 1 3 28 1 2 <C 2 176 8 1 1 3 28 1 1 C> 2 177 9 1 1 3 28 13 C> 178 10 1 1 3 28 13 3 B> 179 9 1 1 3 28 13 3 <A 180 10 1 1 3 28 14 A> 181 11 1 1 3 28 15 B> 182 10 1 1 3 28 15 <A + 187 5 1 1 3 28 <A 15 188 4 1 1 3 27 <B 16 189 3 1 1 3 26 <C 2 16 190 4 1 1 3 25 1 C> 2 16 191 5 1 1 3 25 1 1 C> 16 192 4 1 1 3 25 1 1 <B 2 15 193 5 1 1 3 25 1 2 B> 2 15 194 4 1 1 3 25 1 2 <C 2 15 195 5 1 1 3 25 1 1 C> 2 15 196 6 1 1 3 25 13 C> 15 197 5 1 1 3 25 13 <B 2 14 198 6 1 1 3 25 1 1 2 B> 2 14 199 5 1 1 3 25 1 1 2 <C 2 14 200 6 1 1 3 25 13 C> 2 14 201 7 1 1 3 25 14 C> 14 202 6 1 1 3 25 14 <B 2 13 203 7 1 1 3 25 13 2 B> 2 13 204 6 1 1 3 25 13 2 <C 2 13 205 7 1 1 3 25 14 C> 2 13 206 8 1 1 3 25 15 C> 13 207 7 1 1 3 25 15 <B 2 1 1 208 8 1 1 3 25 14 2 B> 2 1 1 209 7 1 1 3 25 14 2 <C 2 1 1 210 8 1 1 3 25 15 C> 2 1 1 211 9 1 1 3 25 16 C> 1 1 212 8 1 1 3 25 16 <B 2 1 213 9 1 1 3 25 15 2 B> 2 1 214 8 1 1 3 25 15 2 <C 2 1 215 9 1 1 3 25 16 C> 2 1 216 10 1 1 3 25 17 C> 1 217 9 1 1 3 25 17 <B 2 218 10 1 1 3 25 16 2 B> 2 219 9 1 1 3 25 16 2 <C 2 220 10 1 1 3 25 17 C> 2 221 11 1 1 3 25 18 C> 222 12 1 1 3 25 18 3 B> 223 11 1 1 3 25 18 3 <A 224 12 1 1 3 25 19 A> 225 13 1 1 3 25 110 B> 226 12 1 1 3 25 110 <A + 236 2 1 1 3 25 <A 110 237 1 1 1 3 24 <B 111 238 0 1 1 3 23 <C 2 111 239 1 1 1 3 2 2 1 C> 2 111 240 2 1 1 3 2 2 1 1 C> 111 241 1 1 1 3 2 2 1 1 <B 2 110 242 2 1 1 3 2 2 1 2 B> 2 110 243 1 1 1 3 2 2 1 2 <C 2 110 244 2 1 1 3 2 2 1 1 C> 2 110 245 3 1 1 3 2 2 13 C> 110 246 2 1 1 3 2 2 13 <B 2 19 247 3 1 1 3 2 2 1 1 2 B> 2 19 248 2 1 1 3 2 2 1 1 2 <C 2 19 249 3 1 1 3 2 2 13 C> 2 19 250 4 1 1 3 2 2 14 C> 19 251 3 1 1 3 2 2 14 <B 2 18 After 251 steps (201 lines): state = B. Produced 18 nonzeros. Tape index 3, scanned [-6 .. 13].
State | Count | Execution count | First in step | ||||||
---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
A | 70 | 11 | 41 | 12 | 6 | 0 | 2 | 6 | 23 |
B | 98 | 22 | 47 | 29 | 1 | 4 | 11 | ||
C | 83 | 9 | 20 | 52 | 2 | 12 | 16 | 15 | 14 |