Comment: This TM produces >2.4x10^26 nonzeros in >5.7x10^52 steps. Comment: If started in state B it will run for one more step Comment: ... but still generate the same number of non-zeros. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
| A | 1RB | 1LA | 1LB | 1RA | 1 | right | B | 1 | left | A | 1 | left | B | 1 | right | A |
| B | 0LA | 2RB | 2LC | 1RH | 0 | left | A | 2 | right | B | 2 | left | C | 1 | right | H |
| C | 3RB | 2LB | 1RC | 0RC | 3 | right | B | 2 | left | B | 1 | right | C | 0 | right | C |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <A
3 -1 <A 1
4 0 1 B> 1
5 1 1 2 B>
6 0 1 2 <A
7 -1 1 <B 1
8 0 2 B> 1
9 1 2 2 B>
10 0 2 2 <A
11 -1 2 <B 1
12 -2 <C 2 1
13 -1 3 B> 2 1
14 -2 3 <C 2 1
15 -1 C> 2 1
16 0 1 C> 1
17 -1 1 <B 2
18 0 2 B> 2
19 -1 2 <C 2
20 0 1 C> 2
21 1 1 1 C>
22 2 1 1 3 B>
23 1 1 1 3 <A
24 2 13 A>
25 3 14 B>
26 2 14 <A
+ 30 -2 <A 14
31 -1 1 B> 14
+ 35 3 1 24 B>
36 2 1 24 <A
37 1 1 23 <B 1
38 0 1 2 2 <C 2 1
39 1 1 2 1 C> 2 1
40 2 1 2 1 1 C> 1
41 1 1 2 1 1 <B 2
42 2 1 2 1 2 B> 2
43 1 1 2 1 2 <C 2
44 2 1 2 1 1 C> 2
45 3 1 2 13 C>
46 4 1 2 13 3 B>
47 3 1 2 13 3 <A
48 4 1 2 14 A>
49 5 1 2 15 B>
50 4 1 2 15 <A
+ 55 -1 1 2 <A 15
56 -2 1 <B 16
57 -1 2 B> 16
+ 63 5 27 B>
64 4 27 <A
65 3 26 <B 1
66 2 25 <C 2 1
67 3 24 1 C> 2 1
68 4 24 1 1 C> 1
69 3 24 1 1 <B 2
70 4 24 1 2 B> 2
71 3 24 1 2 <C 2
72 4 24 1 1 C> 2
73 5 24 13 C>
74 6 24 13 3 B>
75 5 24 13 3 <A
76 6 24 14 A>
77 7 24 15 B>
78 6 24 15 <A
+ 83 1 24 <A 15
84 0 23 <B 16
85 -1 2 2 <C 2 16
86 0 2 1 C> 2 16
87 1 2 1 1 C> 16
88 0 2 1 1 <B 2 15
89 1 2 1 2 B> 2 15
90 0 2 1 2 <C 2 15
91 1 2 1 1 C> 2 15
92 2 2 13 C> 15
93 1 2 13 <B 2 14
94 2 2 1 1 2 B> 2 14
95 1 2 1 1 2 <C 2 14
96 2 2 13 C> 2 14
97 3 2 14 C> 14
98 2 2 14 <B 2 13
99 3 2 13 2 B> 2 13
100 2 2 13 2 <C 2 13
101 3 2 14 C> 2 13
102 4 2 15 C> 13
103 3 2 15 <B 2 1 1
104 4 2 14 2 B> 2 1 1
105 3 2 14 2 <C 2 1 1
106 4 2 15 C> 2 1 1
107 5 2 16 C> 1 1
108 4 2 16 <B 2 1
109 5 2 15 2 B> 2 1
110 4 2 15 2 <C 2 1
111 5 2 16 C> 2 1
112 6 2 17 C> 1
113 5 2 17 <B 2
114 6 2 16 2 B> 2
115 5 2 16 2 <C 2
116 6 2 17 C> 2
117 7 2 18 C>
118 8 2 18 3 B>
119 7 2 18 3 <A
120 8 2 19 A>
121 9 2 110 B>
122 8 2 110 <A
+ 132 -2 2 <A 110
133 -3 <B 111
134 -4 <A 0 111
135 -3 1 B> 0 111
136 -4 1 <A 0 111
137 -5 <A 1 0 111
138 -4 1 B> 1 0 111
139 -3 1 2 B> 0 111
140 -4 1 2 <A 0 111
141 -5 1 <B 1 0 111
142 -4 2 B> 1 0 111
143 -3 2 2 B> 0 111
144 -4 2 2 <A 0 111
145 -5 2 <B 1 0 111
146 -6 <C 2 1 0 111
147 -5 3 B> 2 1 0 111
148 -6 3 <C 2 1 0 111
149 -5 C> 2 1 0 111
150 -4 1 C> 1 0 111
151 -5 1 <B 2 0 111
152 -4 2 B> 2 0 111
153 -5 2 <C 2 0 111
154 -4 1 C> 2 0 111
155 -3 1 1 C> 0 111
156 -2 1 1 3 B> 111
+ 167 9 1 1 3 211 B>
168 8 1 1 3 211 <A
169 7 1 1 3 210 <B 1
170 6 1 1 3 29 <C 2 1
171 7 1 1 3 28 1 C> 2 1
172 8 1 1 3 28 1 1 C> 1
173 7 1 1 3 28 1 1 <B 2
174 8 1 1 3 28 1 2 B> 2
175 7 1 1 3 28 1 2 <C 2
176 8 1 1 3 28 1 1 C> 2
177 9 1 1 3 28 13 C>
178 10 1 1 3 28 13 3 B>
179 9 1 1 3 28 13 3 <A
180 10 1 1 3 28 14 A>
181 11 1 1 3 28 15 B>
182 10 1 1 3 28 15 <A
+ 187 5 1 1 3 28 <A 15
188 4 1 1 3 27 <B 16
189 3 1 1 3 26 <C 2 16
190 4 1 1 3 25 1 C> 2 16
191 5 1 1 3 25 1 1 C> 16
192 4 1 1 3 25 1 1 <B 2 15
193 5 1 1 3 25 1 2 B> 2 15
194 4 1 1 3 25 1 2 <C 2 15
195 5 1 1 3 25 1 1 C> 2 15
196 6 1 1 3 25 13 C> 15
197 5 1 1 3 25 13 <B 2 14
198 6 1 1 3 25 1 1 2 B> 2 14
199 5 1 1 3 25 1 1 2 <C 2 14
200 6 1 1 3 25 13 C> 2 14
201 7 1 1 3 25 14 C> 14
202 6 1 1 3 25 14 <B 2 13
203 7 1 1 3 25 13 2 B> 2 13
204 6 1 1 3 25 13 2 <C 2 13
205 7 1 1 3 25 14 C> 2 13
206 8 1 1 3 25 15 C> 13
207 7 1 1 3 25 15 <B 2 1 1
208 8 1 1 3 25 14 2 B> 2 1 1
209 7 1 1 3 25 14 2 <C 2 1 1
210 8 1 1 3 25 15 C> 2 1 1
211 9 1 1 3 25 16 C> 1 1
212 8 1 1 3 25 16 <B 2 1
213 9 1 1 3 25 15 2 B> 2 1
214 8 1 1 3 25 15 2 <C 2 1
215 9 1 1 3 25 16 C> 2 1
216 10 1 1 3 25 17 C> 1
217 9 1 1 3 25 17 <B 2
218 10 1 1 3 25 16 2 B> 2
219 9 1 1 3 25 16 2 <C 2
220 10 1 1 3 25 17 C> 2
221 11 1 1 3 25 18 C>
222 12 1 1 3 25 18 3 B>
223 11 1 1 3 25 18 3 <A
224 12 1 1 3 25 19 A>
225 13 1 1 3 25 110 B>
226 12 1 1 3 25 110 <A
+ 236 2 1 1 3 25 <A 110
237 1 1 1 3 24 <B 111
238 0 1 1 3 23 <C 2 111
239 1 1 1 3 2 2 1 C> 2 111
240 2 1 1 3 2 2 1 1 C> 111
241 1 1 1 3 2 2 1 1 <B 2 110
242 2 1 1 3 2 2 1 2 B> 2 110
243 1 1 1 3 2 2 1 2 <C 2 110
244 2 1 1 3 2 2 1 1 C> 2 110
245 3 1 1 3 2 2 13 C> 110
246 2 1 1 3 2 2 13 <B 2 19
247 3 1 1 3 2 2 1 1 2 B> 2 19
248 2 1 1 3 2 2 1 1 2 <C 2 19
249 3 1 1 3 2 2 13 C> 2 19
250 4 1 1 3 2 2 14 C> 19
251 3 1 1 3 2 2 14 <B 2 18
After 251 steps (201 lines): state = B.
Produced 18 nonzeros.
Tape index 3, scanned [-6 .. 13].
| State | Count | Execution count | First in step | ||||||
|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
| A | 70 | 11 | 41 | 12 | 6 | 0 | 2 | 6 | 23 |
| B | 98 | 22 | 47 | 29 | 1 | 4 | 11 | ||
| C | 83 | 9 | 20 | 52 | 2 | 12 | 16 | 15 | 14 |