3-state 4-symbol #b (T.J. & S. Ligocki)

Comment: This TM produces >2.4x10^26 nonzeros in >5.7x10^52 steps.
Comment: If started in state B it will run for one more step
Comment: ... but still generate the same number of non-zeros.

State on
0
on
1
on
2
on
3
on 0 on 1 on 2 on 3
Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 1LA 1LB 1RA 1 right B 1 left A 1 left B 1 right A
B 0LA 2RB 2LC 1RH 0 left A 2 right B 2 left C 1 right H
C 3RB 2LB 1RC 0RC 3 right B 2 left B 1 right C 0 right C
Transition table
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

Pushing initial machine.
Pushing macro factor 1.
Pushing BCK machine.

Steps BasSteps BasTpos  Tape contents
    0        0       0  (0)A>
    1        1       1  (1)B>
    2        3      -1  <A(1)
    3        5       1  1 (2)B>
    4        7      -1  1 <B(1)
    5        9       1  2 (2)B>
    6       11      -1  2 <B(1)
    7       12      -2  <C(2) 1
    8       16       0  (1)C> 1
    9       21       1  1 (1)C>
   10       22       2  12 (3)B>
   11       25       3  13 (1)B>
   12       27       1  13 <A(1)
   13       30      -2  <A(1) 13
   14       32       0  1 (2)B> 13
   15       35       3  1 23 (2)B>
   16       37       1  1 23 <B(1)
   17       38       0  1 22 <C(2) 1
   18       40       2  1 2 1 (1)C> 1
   19       45       3  1 2 12 (1)C>
   20       46       4  1 2 13 (3)B>
   21       49       5  1 2 14 (1)B>
   22       51       3  1 2 14 <A(1)
   23       55      -1  1 2 <A(1) 14
   24       56      -2  1 <B(1) 15
   25       58       0  2 (2)B> 15
   26       63       5  26 (2)B>
   27       65       3  26 <B(1)
   28       66       2  25 <C(2) 1
   29       68       4  24 1 (1)C> 1
   30       73       5  24 12 (1)C>
   31       74       6  24 13 (3)B>
   32       77       7  24 14 (1)B>
   33       79       5  24 14 <A(1)
   34       83       1  24 <A(1) 14
   35       84       0  23 <B(1) 15
   36       85      -1  22 <C(2) 16
   37       87       1  2 1 (1)C> 16
   38      117       7  2 17 (1)C>
   39      118       8  2 18 (3)B>
   40      121       9  2 19 (1)B>
   41      123       7  2 19 <A(1)
   42      132      -2  2 <A(1) 19
   43      133      -3  <B(1) 110
   44      134      -4  <A(0) 111
   45      137      -5  <A(1) 0 111
   46      139      -3  1 (2)B> 0 111
   47      141      -5  1 <B(1) 0 111
   48      143      -3  2 (2)B> 0 111
   49      145      -5  2 <B(1) 0 111
   50      146      -6  <C(2) 1 0 111
   51      150      -4  (1)C> 1 0 111
   52      155      -3  1 (1)C> 0 111
   53      156      -2  12 (3)B> 111
   54      157      -1  12 3 (2)B> 110
   55      167       9  12 3 210 (2)B>
   56      169       7  12 3 210 <B(1)
   57      170       6  12 3 29 <C(2) 1
   58      172       8  12 3 28 1 (1)C> 1
   59      177       9  12 3 28 12 (1)C>
   60      178      10  12 3 28 13 (3)B>
   61      181      11  12 3 28 14 (1)B>
   62      183       9  12 3 28 14 <A(1)
   63      187       5  12 3 28 <A(1) 14
   64      188       4  12 3 27 <B(1) 15
   65      189       3  12 3 26 <C(2) 16
   66      191       5  12 3 25 1 (1)C> 16
   67      221      11  12 3 25 17 (1)C>
   68      222      12  12 3 25 18 (3)B>
   69      225      13  12 3 25 19 (1)B>
   70      227      11  12 3 25 19 <A(1)
   71      236       2  12 3 25 <A(1) 19
   72      237       1  12 3 24 <B(1) 110
   73      238       0  12 3 23 <C(2) 111
   74      240       2  12 3 22 1 (1)C> 111
   75      295      13  12 3 22 112 (1)C>
   76      296      14  12 3 22 113 (3)B>
   77      299      15  12 3 22 114 (1)B>
   78      301      13  12 3 22 114 <A(1)
   79      315      -1  12 3 22 <A(1) 114
   80      316      -2  12 3 2 <B(1) 115
   81      317      -3  12 3 <C(2) 116
   82      319      -1  12 0 (1)C> 116
   83      399      15  12 0 116 (1)C>
   84      400      16  12 0 117 (3)B>
   85      403      17  12 0 118 (1)B>
   86      405      15  12 0 118 <A(1)
   87      423      -3  12 0 <A(1) 118
   88      425      -1  13 (2)B> 118
   89      443      17  13 218 (2)B>
   90      445      15  13 218 <B(1)
   91      446      14  13 217 <C(2) 1
   92      448      16  13 216 1 (1)C> 1
   93      453      17  13 216 12 (1)C>
   94      454      18  13 216 13 (3)B>
   95      457      19  13 216 14 (1)B>
   96      459      17  13 216 14 <A(1)
   97      463      13  13 216 <A(1) 14
   98      464      12  13 215 <B(1) 15
   99      465      11  13 214 <C(2) 16
  100      467      13  13 213 1 (1)C> 16
  101      497      19  13 213 17 (1)C>
  102      498      20  13 213 18 (3)B>
  103      501      21  13 213 19 (1)B>
  104      503      19  13 213 19 <A(1)
  105      512      10  13 213 <A(1) 19
  106      513       9  13 212 <B(1) 110
  107      514       8  13 211 <C(2) 111
  108      516      10  13 210 1 (1)C> 111
  109      571      21  13 210 112 (1)C>
  110      572      22  13 210 113 (3)B>
  111      575      23  13 210 114 (1)B>
  112      577      21  13 210 114 <A(1)
  113      591       7  13 210 <A(1) 114
  114      592       6  13 29 <B(1) 115
  115      593       5  13 28 <C(2) 116
  116      595       7  13 27 1 (1)C> 116
  117      675      23  13 27 117 (1)C>
  118      676      24  13 27 118 (3)B>
  119      679      25  13 27 119 (1)B>
  120      681      23  13 27 119 <A(1)
  121      700       4  13 27 <A(1) 119
  122      701       3  13 26 <B(1) 120
  123      702       2  13 25 <C(2) 121
  124      704       4  13 24 1 (1)C> 121
  125      809      25  13 24 122 (1)C>
  126      810      26  13 24 123 (3)B>
  127      813      27  13 24 124 (1)B>
  128      815      25  13 24 124 <A(1)
  129      839       1  13 24 <A(1) 124
  130      840       0  13 23 <B(1) 125
  131      841      -1  13 22 <C(2) 126
  132      843       1  13 2 1 (1)C> 126
  133      973      27  13 2 127 (1)C>
  134      974      28  13 2 128 (3)B>
  135      977      29  13 2 129 (1)B>
  136      979      27  13 2 129 <A(1)
  137     1008      -2  13 2 <A(1) 129
  138     1009      -3  13 <B(1) 130
  139     1011      -1  12 2 (2)B> 130
  140     1041      29  12 231 (2)B>
  141     1043      27  12 231 <B(1)
  142     1044      26  12 230 <C(2) 1
  143     1046      28  12 229 1 (1)C> 1
  144     1051      29  12 229 12 (1)C>
  145     1052      30  12 229 13 (3)B>
  146     1055      31  12 229 14 (1)B>
  147     1057      29  12 229 14 <A(1)
  148     1061      25  12 229 <A(1) 14
  149     1062      24  12 228 <B(1) 15
  150     1063      23  12 227 <C(2) 16
  151     1065      25  12 226 1 (1)C> 16
  152     1095      31  12 226 17 (1)C>
  153     1096      32  12 226 18 (3)B>
  154     1099      33  12 226 19 (1)B>
  155     1101      31  12 226 19 <A(1)
  156     1110      22  12 226 <A(1) 19
  157     1111      21  12 225 <B(1) 110
  158     1112      20  12 224 <C(2) 111
  159     1114      22  12 223 1 (1)C> 111
  160     1169      33  12 223 112 (1)C>
  161     1170      34  12 223 113 (3)B>
  162     1173      35  12 223 114 (1)B>
  163     1175      33  12 223 114 <A(1)
  164     1189      19  12 223 <A(1) 114
  165     1190      18  12 222 <B(1) 115
  166     1191      17  12 221 <C(2) 116
  167     1193      19  12 220 1 (1)C> 116
  168     1273      35  12 220 117 (1)C>
  169     1274      36  12 220 118 (3)B>
  170     1277      37  12 220 119 (1)B>
  171     1279      35  12 220 119 <A(1)
  172     1298      16  12 220 <A(1) 119
  173     1299      15  12 219 <B(1) 120
  174     1300      14  12 218 <C(2) 121
  175     1302      16  12 217 1 (1)C> 121
  176     1407      37  12 217 122 (1)C>
  177     1408      38  12 217 123 (3)B>
  178     1411      39  12 217 124 (1)B>
  179     1413      37  12 217 124 <A(1)
  180     1437      13  12 217 <A(1) 124
  181     1438      12  12 216 <B(1) 125
  182     1439      11  12 215 <C(2) 126
  183     1441      13  12 214 1 (1)C> 126
  184     1571      39  12 214 127 (1)C>
  185     1572      40  12 214 128 (3)B>
  186     1575      41  12 214 129 (1)B>
  187     1577      39  12 214 129 <A(1)
  188     1606      10  12 214 <A(1) 129
  189     1607       9  12 213 <B(1) 130
  190     1608       8  12 212 <C(2) 131
  191     1610      10  12 211 1 (1)C> 131
  192     1765      41  12 211 132 (1)C>
  193     1766      42  12 211 133 (3)B>
  194     1769      43  12 211 134 (1)B>
  195     1771      41  12 211 134 <A(1)
  196     1805       7  12 211 <A(1) 134
  197     1806       6  12 210 <B(1) 135
  198     1807       5  12 29 <C(2) 136
  199     1809       7  12 28 1 (1)C> 136
  200     1989      43  12 28 137 (1)C>

Lines:       201
Top steps:   200
Macro steps: 200
Basic steps: 1989
Tape index:  43
nonzeros:    48
log10(nonzeros):    1.681
log10(steps   ):    3.299

The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Input to awk program:
    gohalt 1
    nbs 4
    T 3-state 4-symbol #b (T.J. & S. Ligocki)
    : >2.4x10^26 >5.7x10^52
    5T  1RB 1LA 1LB 1RA  0LA 2RB 2LC 1RH  3RB 2LB 1RC 0RC
    C If started in state B it will run for one more step
    C ... but still generate the same number of non-zeros.
    L 6
    M	201
    pref	sim
    machv Lig34_b  	just simple
    machv Lig34_b-r	with repetitions reduced
    machv Lig34_b-1	with tape symbol exponents
    machv Lig34_b-m	as 1-bck-macro machine
    machv Lig34_b-a	as 1-bck-macro machine with pure additive config-TRs
    iam	Lig34_b-m
    mtype	1 0
    mmtyp	1
    r	1
    H	1
    mac	0
    E	2
    sympr	
    HM	1
    date	Tue Jul  6 22:13:33 CEST 2010
    edate	Tue Jul  6 22:13:33 CEST 2010
    bnspeed	1

Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:13:33 CEST 2010
Ready: Tue Jul 6 22:13:33 CEST 2010