Comment: This TM produces >2.4x10^26 nonzeros in >5.7x10^52 steps. Comment: If started in state B it will run for one more step Comment: ... but still generate the same number of non-zeros. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
A | 1RB | 1LA | 1LB | 1RA | 1 | right | B | 1 | left | A | 1 | left | B | 1 | right | A |
B | 0LA | 2RB | 2LC | 1RH | 0 | left | A | 2 | right | B | 2 | left | C | 1 | right | H |
C | 3RB | 2LB | 1RC | 0RC | 3 | right | B | 2 | left | B | 1 | right | C | 0 | right | C |
The same TM just simple. Simulation is done with repetitions reduced. The same TM with tape symbol exponents. The same TM as 1-bck-macro machine. The same TM as 1-bck-macro machine with pure additive config-TRs. Step Tpos St Tape contents 0 0 A . . . 0 1 1 B . . . 10 2 0 A . . . 10 3 -1 A . . .010 4 0 B . . .110 5 1 B . . .120 6 0 A . . .120 7 -1 B . . .110 + 9 1 B . . .220 by B/1 * 2 10 0 A . . .220 11 -1 B . . .210 12 -2 C . . 0210 13 -1 B . . 3210 14 -2 C . . 3210 15 -1 C . . 0210 16 0 C . . 0110 17 -1 B . . 0120 18 0 B . . 0220 19 -1 C . . 0220 + 21 1 C . . 0110 by C/2 * 2 22 2 B . . 01130 23 1 A . . 01130 24 2 A . . 01110 25 3 B . . 011110 26 2 A . . 011110 + 30 -2 A . . 011110 by A/1 * 4 31 -1 B . . 111110 + 35 3 B . . 122220 by B/1 * 4 36 2 A . . 122220 37 1 B . . 122210 38 0 C . . 122210 + 40 2 C . . 121110 by C/2 * 2 41 1 B . . 121120 42 2 B . . 121220 43 1 C . . 121220 + 45 3 C . . 121110 by C/2 * 2 46 4 B . . 1211130 47 3 A . . 1211130 48 4 A . . 1211110 49 5 B . . 12111110 50 4 A . . 12111110 + 55 -1 A . . 12111110 by A/1 * 5 56 -2 B . . 11111110 + 63 5 B . . 22222220 by B/1 * 7 64 4 A . . 22222220 65 3 B . . 22222210 66 2 C . . 22222210 + 68 4 C . . 22221110 by C/2 * 2 69 3 B . . 22221120 70 4 B . . 22221220 71 3 C . . 22221220 + 73 5 C . . 22221110 by C/2 * 2 74 6 B . . 222211130 75 5 A . . 222211130 76 6 A . . 222211110 77 7 B . . 2222111110 78 6 A . . 2222111110 + 83 1 A . . 2222111110 by A/1 * 5 84 0 B . . 2221111110 85 -1 C . . 2221111110 + 87 1 C . . 2111111110 by C/2 * 2 88 0 B . . 2112111110 89 1 B . . 2122111110 90 0 C . . 2122111110 + 92 2 C . . 2111111110 by C/2 * 2 93 1 B . . 2111211110 94 2 B . . 2112211110 95 1 C . . 2112211110 + 97 3 C . . 2111111110 by C/2 * 2 98 2 B . . 2111121110 99 3 B . . 2111221110 100 2 C . . 2111221110 + 102 4 C . . 2111111110 by C/2 * 2 103 3 B . . 2111112110 104 4 B . . 2111122110 105 3 C . . 2111122110 + 107 5 C . . 2111111110 by C/2 * 2 108 4 B . . 2111111210 109 5 B . . 2111112210 110 4 C . . 2111112210 + 112 6 C . . 2111111110 by C/2 * 2 113 5 B . . 2111111120 114 6 B . . 2111111220 115 5 C . . 2111111220 + 117 7 C . . 2111111110 by C/2 * 2 118 8 B . . 21111111130 119 7 A . . 21111111130 120 8 A . . 21111111110 121 9 B . . 211111111110 122 8 A . . 211111111110 + 132 -2 A . . 211111111110 by A/1 * 10 133 -3 B . .0111111111110 134 -4 A . 00111111111110 135 -3 B . 10111111111110 136 -4 A . 10111111111110 137 -5 A .010111111111110 138 -4 B .110111111111110 139 -3 B .120111111111110 140 -4 A .120111111111110 141 -5 B .110111111111110 + 143 -3 B .220111111111110 by B/1 * 2 144 -4 A .220111111111110 145 -5 B .210111111111110 146 -6 C 0210111111111110 147 -5 B 3210111111111110 148 -6 C 3210111111111110 149 -5 C 0210111111111110 150 -4 C 0110111111111110 151 -5 B 0120111111111110 152 -4 B 0220111111111110 153 -5 C 0220111111111110 + 155 -3 C 0110111111111110 by C/2 * 2 156 -2 B 0113111111111110 + 167 9 B 0113222222222220 by B/1 * 11 168 8 A 0113222222222220 169 7 B 0113222222222210 170 6 C 0113222222222210 + 172 8 C 0113222222221110 by C/2 * 2 173 7 B 0113222222221120 174 8 B 0113222222221220 175 7 C 0113222222221220 + 177 9 C 0113222222221110 by C/2 * 2 178 10 B 01132222222211130 179 9 A 01132222222211130 180 10 A 01132222222211110 181 11 B 011322222222111110 182 10 A 011322222222111110 + 187 5 A 011322222222111110 by A/1 * 5 188 4 B 011322222221111110 189 3 C 011322222221111110 + 191 5 C 011322222111111110 by C/2 * 2 192 4 B 011322222112111110 193 5 B 011322222122111110 194 4 C 011322222122111110 + 196 6 C 011322222111111110 by C/2 * 2 197 5 B 011322222111211110 198 6 B 011322222112211110 199 5 C 011322222112211110 + 201 7 C 011322222111111110 by C/2 * 2 202 6 B 011322222111121110 203 7 B 011322222111221110 204 6 C 011322222111221110 + 206 8 C 011322222111111110 by C/2 * 2 207 7 B 011322222111112110 208 8 B 011322222111122110 209 7 C 011322222111122110 + 211 9 C 011322222111111110 by C/2 * 2 212 8 B 011322222111111210 213 9 B 011322222111112210 214 8 C 011322222111112210 + 216 10 C 011322222111111110 by C/2 * 2 217 9 B 011322222111111120 218 10 B 011322222111111220 219 9 C 011322222111111220 + 221 11 C 011322222111111110 by C/2 * 2 222 12 B 0113222221111111130 223 11 A 0113222221111111130 224 12 A 0113222221111111110 225 13 B 01132222211111111110 226 12 A 01132222211111111110 + 236 2 A 01132222211111111110 by A/1 * 10 237 1 B 01132222111111111110 238 0 C 01132222111111111110 + 240 2 C 01132211111111111110 by C/2 * 2 241 1 B 01132211211111111110 242 2 B 01132212211111111110 243 1 C 01132212211111111110 + 245 3 C 01132211111111111110 by C/2 * 2 246 2 B 01132211121111111110 247 3 B 01132211221111111110 248 2 C 01132211221111111110 + 250 4 C 01132211111111111110 by C/2 * 2 251 3 B 01132211112111111110 252 4 B 01132211122111111110 253 3 C 01132211122111111110 + 255 5 C 01132211111111111110 by C/2 * 2 256 4 B 01132211111211111110 257 5 B 01132211112211111110 258 4 C 01132211112211111110 + 260 6 C 01132211111111111110 by C/2 * 2 261 5 B 01132211111121111110 262 6 B 01132211111221111110 263 5 C 01132211111221111110 + 265 7 C 01132211111111111110 by C/2 * 2 266 6 B 01132211111112111110 267 7 B 01132211111122111110 268 6 C 01132211111122111110 + 270 8 C 01132211111111111110 by C/2 * 2 271 7 B 01132211111111211110 272 8 B 01132211111112211110 273 7 C 01132211111112211110 + 275 9 C 01132211111111111110 by C/2 * 2 276 8 B 01132211111111121110 277 9 B 01132211111111221110 278 8 C 01132211111111221110 + 280 10 C 01132211111111111110 by C/2 * 2 281 9 B 01132211111111112110 282 10 B 01132211111111122110 283 9 C 01132211111111122110 + 285 11 C 01132211111111111110 by C/2 * 2 286 10 B 01132211111111111210 After 286 steps (201 lines): state = B. Produced 18 nonzeros. Tape index 10, scanned [-6 .. 13].
State | Count | Execution count | First in step | ||||||
---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
A | 70 | 11 | 41 | 12 | 6 | 0 | 2 | 6 | 23 |
B | 112 | 22 | 54 | 36 | 1 | 4 | 11 | ||
C | 104 | 9 | 27 | 66 | 2 | 12 | 16 | 15 | 14 |