3-state 4-symbol #b (T.J. & S. Ligocki)

Comment: This TM produces >2.4x10^26 nonzeros in >5.7x10^52 steps.
Comment: If started in state B it will run for one more step
Comment: ... but still generate the same number of non-zeros.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on 0 on 1 on 2 on 3
Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 1LA 1LB 1RA 1 right B 1 left A 1 left B 1 right A
B 0LA 2RB 2LC 1RH 0 left A 2 right B 2 left C 1 right H
C 3RB 2LB 1RC 0RC 3 right B 2 left B 1 right C 0 right C
Transition table
The same TM just simple.
Simulation is done with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . . 0
     1    1 B . . . 10
     2    0 A . . . 10
     3   -1 A . . .010
     4    0 B . . .110
     5    1 B . . .120
     6    0 A . . .120
     7   -1 B . . .110
+    9    1 B . . .220   by B/1 * 2
    10    0 A . . .220
    11   -1 B . . .210
    12   -2 C . . 0210
    13   -1 B . . 3210
    14   -2 C . . 3210
    15   -1 C . . 0210
    16    0 C . . 0110
    17   -1 B . . 0120
    18    0 B . . 0220
    19   -1 C . . 0220
+   21    1 C . . 0110   by C/2 * 2
    22    2 B . . 01130
    23    1 A . . 01130
    24    2 A . . 01110
    25    3 B . . 011110
    26    2 A . . 011110
+   30   -2 A . . 011110   by A/1 * 4
    31   -1 B . . 111110
+   35    3 B . . 122220   by B/1 * 4
    36    2 A . . 122220
    37    1 B . . 122210
    38    0 C . . 122210
+   40    2 C . . 121110   by C/2 * 2
    41    1 B . . 121120
    42    2 B . . 121220
    43    1 C . . 121220
+   45    3 C . . 121110   by C/2 * 2
    46    4 B . . 1211130
    47    3 A . . 1211130
    48    4 A . . 1211110
    49    5 B . . 12111110
    50    4 A . . 12111110
+   55   -1 A . . 12111110   by A/1 * 5
    56   -2 B . . 11111110
+   63    5 B . . 22222220   by B/1 * 7
    64    4 A . . 22222220
    65    3 B . . 22222210
    66    2 C . . 22222210
+   68    4 C . . 22221110   by C/2 * 2
    69    3 B . . 22221120
    70    4 B . . 22221220
    71    3 C . . 22221220
+   73    5 C . . 22221110   by C/2 * 2
    74    6 B . . 222211130
    75    5 A . . 222211130
    76    6 A . . 222211110
    77    7 B . . 2222111110
    78    6 A . . 2222111110
+   83    1 A . . 2222111110   by A/1 * 5
    84    0 B . . 2221111110
    85   -1 C . . 2221111110
+   87    1 C . . 2111111110   by C/2 * 2
    88    0 B . . 2112111110
    89    1 B . . 2122111110
    90    0 C . . 2122111110
+   92    2 C . . 2111111110   by C/2 * 2
    93    1 B . . 2111211110
    94    2 B . . 2112211110
    95    1 C . . 2112211110
+   97    3 C . . 2111111110   by C/2 * 2
    98    2 B . . 2111121110
    99    3 B . . 2111221110
   100    2 C . . 2111221110
+  102    4 C . . 2111111110   by C/2 * 2
   103    3 B . . 2111112110
   104    4 B . . 2111122110
   105    3 C . . 2111122110
+  107    5 C . . 2111111110   by C/2 * 2
   108    4 B . . 2111111210
   109    5 B . . 2111112210
   110    4 C . . 2111112210
+  112    6 C . . 2111111110   by C/2 * 2
   113    5 B . . 2111111120
   114    6 B . . 2111111220
   115    5 C . . 2111111220
+  117    7 C . . 2111111110   by C/2 * 2
   118    8 B . . 21111111130
   119    7 A . . 21111111130
   120    8 A . . 21111111110
   121    9 B . . 211111111110
   122    8 A . . 211111111110
+  132   -2 A . . 211111111110   by A/1 * 10
   133   -3 B . .0111111111110
   134   -4 A . 00111111111110
   135   -3 B . 10111111111110
   136   -4 A . 10111111111110
   137   -5 A .010111111111110
   138   -4 B .110111111111110
   139   -3 B .120111111111110
   140   -4 A .120111111111110
   141   -5 B .110111111111110
+  143   -3 B .220111111111110   by B/1 * 2
   144   -4 A .220111111111110
   145   -5 B .210111111111110
   146   -6 C 0210111111111110
   147   -5 B 3210111111111110
   148   -6 C 3210111111111110
   149   -5 C 0210111111111110
   150   -4 C 0110111111111110
   151   -5 B 0120111111111110
   152   -4 B 0220111111111110
   153   -5 C 0220111111111110
+  155   -3 C 0110111111111110   by C/2 * 2
   156   -2 B 0113111111111110
+  167    9 B 0113222222222220   by B/1 * 11
   168    8 A 0113222222222220
   169    7 B 0113222222222210
   170    6 C 0113222222222210
+  172    8 C 0113222222221110   by C/2 * 2
   173    7 B 0113222222221120
   174    8 B 0113222222221220
   175    7 C 0113222222221220
+  177    9 C 0113222222221110   by C/2 * 2
   178   10 B 01132222222211130
   179    9 A 01132222222211130
   180   10 A 01132222222211110
   181   11 B 011322222222111110
   182   10 A 011322222222111110
+  187    5 A 011322222222111110   by A/1 * 5
   188    4 B 011322222221111110
   189    3 C 011322222221111110
+  191    5 C 011322222111111110   by C/2 * 2
   192    4 B 011322222112111110
   193    5 B 011322222122111110
   194    4 C 011322222122111110
+  196    6 C 011322222111111110   by C/2 * 2
   197    5 B 011322222111211110
   198    6 B 011322222112211110
   199    5 C 011322222112211110
+  201    7 C 011322222111111110   by C/2 * 2
   202    6 B 011322222111121110
   203    7 B 011322222111221110
   204    6 C 011322222111221110
+  206    8 C 011322222111111110   by C/2 * 2
   207    7 B 011322222111112110
   208    8 B 011322222111122110
   209    7 C 011322222111122110
+  211    9 C 011322222111111110   by C/2 * 2
   212    8 B 011322222111111210
   213    9 B 011322222111112210
   214    8 C 011322222111112210
+  216   10 C 011322222111111110   by C/2 * 2
   217    9 B 011322222111111120
   218   10 B 011322222111111220
   219    9 C 011322222111111220
+  221   11 C 011322222111111110   by C/2 * 2
   222   12 B 0113222221111111130
   223   11 A 0113222221111111130
   224   12 A 0113222221111111110
   225   13 B 01132222211111111110
   226   12 A 01132222211111111110
+  236    2 A 01132222211111111110   by A/1 * 10
   237    1 B 01132222111111111110
   238    0 C 01132222111111111110
+  240    2 C 01132211111111111110   by C/2 * 2
   241    1 B 01132211211111111110
   242    2 B 01132212211111111110
   243    1 C 01132212211111111110
+  245    3 C 01132211111111111110   by C/2 * 2
   246    2 B 01132211121111111110
   247    3 B 01132211221111111110
   248    2 C 01132211221111111110
+  250    4 C 01132211111111111110   by C/2 * 2
   251    3 B 01132211112111111110
   252    4 B 01132211122111111110
   253    3 C 01132211122111111110
+  255    5 C 01132211111111111110   by C/2 * 2
   256    4 B 01132211111211111110
   257    5 B 01132211112211111110
   258    4 C 01132211112211111110
+  260    6 C 01132211111111111110   by C/2 * 2
   261    5 B 01132211111121111110
   262    6 B 01132211111221111110
   263    5 C 01132211111221111110
+  265    7 C 01132211111111111110   by C/2 * 2
   266    6 B 01132211111112111110
   267    7 B 01132211111122111110
   268    6 C 01132211111122111110
+  270    8 C 01132211111111111110   by C/2 * 2
   271    7 B 01132211111111211110
   272    8 B 01132211111112211110
   273    7 C 01132211111112211110
+  275    9 C 01132211111111111110   by C/2 * 2
   276    8 B 01132211111111121110
   277    9 B 01132211111111221110
   278    8 C 01132211111111221110
+  280   10 C 01132211111111111110   by C/2 * 2
   281    9 B 01132211111111112110
   282   10 B 01132211111111122110
   283    9 C 01132211111111122110
+  285   11 C 01132211111111111110   by C/2 * 2
   286   10 B 01132211111111111210

After 286 steps (201 lines): state = B.
Produced     18 nonzeros.
Tape index 10, scanned [-6 .. 13].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 0 on 1 on 2 on 3
A 70 11 41 12 6 0 2 6 23
B 112 22 54 36   1 4 11  
C 104 9 27 66 2 12 16 15 14
Execution statistics

The same TM just simple.
The same TM with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:13:33 CEST 2010