Comment: This TM produces >2.4x10^26 nonzeros in >5.7x10^52 steps. Comment: If started in state B it will run for one more step Comment: ... but still generate the same number of non-zeros. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
| A | 1RB | 1LA | 1LB | 1RA | 1 | right | B | 1 | left | A | 1 | left | B | 1 | right | A |
| B | 0LA | 2RB | 2LC | 1RH | 0 | left | A | 2 | right | B | 2 | left | C | 1 | right | H |
| C | 3RB | 2LB | 1RC | 0RC | 3 | right | B | 2 | left | B | 1 | right | C | 0 | right | C |
The same TM just simple.
Simulation is done with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.
Step Tpos St Tape contents
0 0 A . . . 0
1 1 B . . . 10
2 0 A . . . 10
3 -1 A . . .010
4 0 B . . .110
5 1 B . . .120
6 0 A . . .120
7 -1 B . . .110
+ 9 1 B . . .220 by B/1 * 2
10 0 A . . .220
11 -1 B . . .210
12 -2 C . . 0210
13 -1 B . . 3210
14 -2 C . . 3210
15 -1 C . . 0210
16 0 C . . 0110
17 -1 B . . 0120
18 0 B . . 0220
19 -1 C . . 0220
+ 21 1 C . . 0110 by C/2 * 2
22 2 B . . 01130
23 1 A . . 01130
24 2 A . . 01110
25 3 B . . 011110
26 2 A . . 011110
+ 30 -2 A . . 011110 by A/1 * 4
31 -1 B . . 111110
+ 35 3 B . . 122220 by B/1 * 4
36 2 A . . 122220
37 1 B . . 122210
38 0 C . . 122210
+ 40 2 C . . 121110 by C/2 * 2
41 1 B . . 121120
42 2 B . . 121220
43 1 C . . 121220
+ 45 3 C . . 121110 by C/2 * 2
46 4 B . . 1211130
47 3 A . . 1211130
48 4 A . . 1211110
49 5 B . . 12111110
50 4 A . . 12111110
+ 55 -1 A . . 12111110 by A/1 * 5
56 -2 B . . 11111110
+ 63 5 B . . 22222220 by B/1 * 7
64 4 A . . 22222220
65 3 B . . 22222210
66 2 C . . 22222210
+ 68 4 C . . 22221110 by C/2 * 2
69 3 B . . 22221120
70 4 B . . 22221220
71 3 C . . 22221220
+ 73 5 C . . 22221110 by C/2 * 2
74 6 B . . 222211130
75 5 A . . 222211130
76 6 A . . 222211110
77 7 B . . 2222111110
78 6 A . . 2222111110
+ 83 1 A . . 2222111110 by A/1 * 5
84 0 B . . 2221111110
85 -1 C . . 2221111110
+ 87 1 C . . 2111111110 by C/2 * 2
88 0 B . . 2112111110
89 1 B . . 2122111110
90 0 C . . 2122111110
+ 92 2 C . . 2111111110 by C/2 * 2
93 1 B . . 2111211110
94 2 B . . 2112211110
95 1 C . . 2112211110
+ 97 3 C . . 2111111110 by C/2 * 2
98 2 B . . 2111121110
99 3 B . . 2111221110
100 2 C . . 2111221110
+ 102 4 C . . 2111111110 by C/2 * 2
103 3 B . . 2111112110
104 4 B . . 2111122110
105 3 C . . 2111122110
+ 107 5 C . . 2111111110 by C/2 * 2
108 4 B . . 2111111210
109 5 B . . 2111112210
110 4 C . . 2111112210
+ 112 6 C . . 2111111110 by C/2 * 2
113 5 B . . 2111111120
114 6 B . . 2111111220
115 5 C . . 2111111220
+ 117 7 C . . 2111111110 by C/2 * 2
118 8 B . . 21111111130
119 7 A . . 21111111130
120 8 A . . 21111111110
121 9 B . . 211111111110
122 8 A . . 211111111110
+ 132 -2 A . . 211111111110 by A/1 * 10
133 -3 B . .0111111111110
134 -4 A . 00111111111110
135 -3 B . 10111111111110
136 -4 A . 10111111111110
137 -5 A .010111111111110
138 -4 B .110111111111110
139 -3 B .120111111111110
140 -4 A .120111111111110
141 -5 B .110111111111110
+ 143 -3 B .220111111111110 by B/1 * 2
144 -4 A .220111111111110
145 -5 B .210111111111110
146 -6 C 0210111111111110
147 -5 B 3210111111111110
148 -6 C 3210111111111110
149 -5 C 0210111111111110
150 -4 C 0110111111111110
151 -5 B 0120111111111110
152 -4 B 0220111111111110
153 -5 C 0220111111111110
+ 155 -3 C 0110111111111110 by C/2 * 2
156 -2 B 0113111111111110
+ 167 9 B 0113222222222220 by B/1 * 11
168 8 A 0113222222222220
169 7 B 0113222222222210
170 6 C 0113222222222210
+ 172 8 C 0113222222221110 by C/2 * 2
173 7 B 0113222222221120
174 8 B 0113222222221220
175 7 C 0113222222221220
+ 177 9 C 0113222222221110 by C/2 * 2
178 10 B 01132222222211130
179 9 A 01132222222211130
180 10 A 01132222222211110
181 11 B 011322222222111110
182 10 A 011322222222111110
+ 187 5 A 011322222222111110 by A/1 * 5
188 4 B 011322222221111110
189 3 C 011322222221111110
+ 191 5 C 011322222111111110 by C/2 * 2
192 4 B 011322222112111110
193 5 B 011322222122111110
194 4 C 011322222122111110
+ 196 6 C 011322222111111110 by C/2 * 2
197 5 B 011322222111211110
198 6 B 011322222112211110
199 5 C 011322222112211110
+ 201 7 C 011322222111111110 by C/2 * 2
202 6 B 011322222111121110
203 7 B 011322222111221110
204 6 C 011322222111221110
+ 206 8 C 011322222111111110 by C/2 * 2
207 7 B 011322222111112110
208 8 B 011322222111122110
209 7 C 011322222111122110
+ 211 9 C 011322222111111110 by C/2 * 2
212 8 B 011322222111111210
213 9 B 011322222111112210
214 8 C 011322222111112210
+ 216 10 C 011322222111111110 by C/2 * 2
217 9 B 011322222111111120
218 10 B 011322222111111220
219 9 C 011322222111111220
+ 221 11 C 011322222111111110 by C/2 * 2
222 12 B 0113222221111111130
223 11 A 0113222221111111130
224 12 A 0113222221111111110
225 13 B 01132222211111111110
226 12 A 01132222211111111110
+ 236 2 A 01132222211111111110 by A/1 * 10
237 1 B 01132222111111111110
238 0 C 01132222111111111110
+ 240 2 C 01132211111111111110 by C/2 * 2
241 1 B 01132211211111111110
242 2 B 01132212211111111110
243 1 C 01132212211111111110
+ 245 3 C 01132211111111111110 by C/2 * 2
246 2 B 01132211121111111110
247 3 B 01132211221111111110
248 2 C 01132211221111111110
+ 250 4 C 01132211111111111110 by C/2 * 2
251 3 B 01132211112111111110
252 4 B 01132211122111111110
253 3 C 01132211122111111110
+ 255 5 C 01132211111111111110 by C/2 * 2
256 4 B 01132211111211111110
257 5 B 01132211112211111110
258 4 C 01132211112211111110
+ 260 6 C 01132211111111111110 by C/2 * 2
261 5 B 01132211111121111110
262 6 B 01132211111221111110
263 5 C 01132211111221111110
+ 265 7 C 01132211111111111110 by C/2 * 2
266 6 B 01132211111112111110
267 7 B 01132211111122111110
268 6 C 01132211111122111110
+ 270 8 C 01132211111111111110 by C/2 * 2
271 7 B 01132211111111211110
272 8 B 01132211111112211110
273 7 C 01132211111112211110
+ 275 9 C 01132211111111111110 by C/2 * 2
276 8 B 01132211111111121110
277 9 B 01132211111111221110
278 8 C 01132211111111221110
+ 280 10 C 01132211111111111110 by C/2 * 2
281 9 B 01132211111111112110
282 10 B 01132211111111122110
283 9 C 01132211111111122110
+ 285 11 C 01132211111111111110 by C/2 * 2
286 10 B 01132211111111111210
After 286 steps (201 lines): state = B.
Produced 18 nonzeros.
Tape index 10, scanned [-6 .. 13].
| State | Count | Execution count | First in step | ||||||
|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
| A | 70 | 11 | 41 | 12 | 6 | 0 | 2 | 6 | 23 |
| B | 112 | 22 | 54 | 36 | 1 | 4 | 11 | ||
| C | 104 | 9 | 27 | 66 | 2 | 12 | 16 | 15 | 14 |