2-state 5-symbol #g from T.J. & S. Ligocki

Comment: This TM produces 620,906,587 nonzeros in 91,791,666,497,368,316 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 1RH 4LA 4LB 2RA 1 right B 1 right H 4 left A 4 left B 2 right A
B 2LB 2RB 3RB 2RA 0RB 2 left B 2 right B 3 right B 2 right A 0 right B
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . 0
     1    1 B . . 10
     2    0 B . . 12
     3    1 B . . 22
     4    2 B . . 230
     5    1 B . . 232
     6    2 A . . 222
     7    1 A . . 224
     8    0 A . . 244
     9   -1 A . .0444
    10    0 B . .1444
    11    1 B . .1044
    12    2 B . .1004
    13    3 B . .10000
    14    2 B . .10002
    15    1 B . .10022
    16    0 B . .10222
    17   -1 B . .12222
    18    0 B . .22222
    19    1 B . .23222
    20    2 B . .23322
    21    3 B . .23332
    22    4 B . .233330
    23    3 B . .233332
    24    4 A . .233322
    25    3 A . .233324
    26    2 A . .233344
    27    1 B . .233444
    28    2 A . .232444
    29    3 A . .232244
    30    4 A . .232224
    31    5 A . .2322220
    32    6 B . .23222210
    33    5 B . .23222212
    34    6 B . .23222222
    35    7 B . .232222230
    36    6 B . .232222232
    37    7 A . .232222222
    38    6 A . .232222224
    39    5 A . .232222244
    40    4 A . .232222444
    41    3 A . .232224444
    42    2 A . .232244444
    43    1 A . .232444444
    44    0 A . .234444444
    45   -1 B . .244444444
    46    0 B . .344444444
    47    1 B . .304444444
    48    2 B . .300444444
    49    3 B . .300044444
    50    4 B . .300004444
    51    5 B . .300000444
    52    6 B . .300000044
    53    7 B . .300000004
    54    8 B . .3000000000
    55    7 B . .3000000002
    56    6 B . .3000000022
    57    5 B . .3000000222
    58    4 B . .3000002222
    59    3 B . .3000022222
    60    2 B . .3000222222
    61    1 B . .3002222222
    62    0 B . .3022222222
    63   -1 B . .3222222222
    64    0 A . .2222222222
    65   -1 A . .2422222222
    66   -2 A . 04422222222
    67   -1 B . 14422222222
    68    0 B . 10422222222
    69    1 B . 10022222222
    70    2 B . 10032222222
    71    3 B . 10033222222
    72    4 B . 10033322222
    73    5 B . 10033332222
    74    6 B . 10033333222
    75    7 B . 10033333322
    76    8 B . 10033333332
    77    9 B . 100333333330
    78    8 B . 100333333332
    79    9 A . 100333333322
    80    8 A . 100333333324
    81    7 A . 100333333344
    82    6 B . 100333333444
    83    7 A . 100333332444
    84    8 A . 100333332244
    85    9 A . 100333332224
    86   10 A . 1003333322220
    87   11 B . 10033333222210
    88   10 B . 10033333222212
    89   11 B . 10033333222222
    90   12 B . 100333332222230
    91   11 B . 100333332222232
    92   12 A . 100333332222222
    93   11 A . 100333332222224
    94   10 A . 100333332222244
    95    9 A . 100333332222444
    96    8 A . 100333332224444
    97    7 A . 100333332244444
    98    6 A . 100333332444444
    99    5 A . 100333334444444
   100    4 B . 100333344444444
   101    5 A . 100333244444444
   102    6 A . 100333224444444
   103    7 A . 100333222444444
   104    8 A . 100333222244444
   105    9 A . 100333222224444
   106   10 A . 100333222222444
   107   11 A . 100333222222244
   108   12 A . 100333222222224
   109   13 A . 1003332222222220
   110   14 B . 10033322222222210
   111   13 B . 10033322222222212
   112   14 B . 10033322222222222
   113   15 B . 100333222222222230
   114   14 B . 100333222222222232
   115   15 A . 100333222222222222
   116   14 A . 100333222222222224
   117   13 A . 100333222222222244
   118   12 A . 100333222222222444
   119   11 A . 100333222222224444
   120   10 A . 100333222222244444
   121    9 A . 100333222222444444
   122    8 A . 100333222224444444
   123    7 A . 100333222244444444
   124    6 A . 100333222444444444
   125    5 A . 100333224444444444
   126    4 A . 100333244444444444
   127    3 A . 100333444444444444
   128    2 B . 100334444444444444
   129    3 A . 100324444444444444
   130    4 A . 100322444444444444
   131    5 A . 100322244444444444
   132    6 A . 100322224444444444
   133    7 A . 100322222444444444
   134    8 A . 100322222244444444
   135    9 A . 100322222224444444
   136   10 A . 100322222222444444
   137   11 A . 100322222222244444
   138   12 A . 100322222222224444
   139   13 A . 100322222222222444
   140   14 A . 100322222222222244
   141   15 A . 100322222222222224
   142   16 A . 1003222222222222220
   143   17 B . 10032222222222222210
   144   16 B . 10032222222222222212
   145   17 B . 10032222222222222222
   146   18 B . 100322222222222222230
   147   17 B . 100322222222222222232
   148   18 A . 100322222222222222222
   149   17 A . 100322222222222222224
   150   16 A . 100322222222222222244
   151   15 A . 100322222222222222444
   152   14 A . 100322222222222224444
   153   13 A . 100322222222222244444
   154   12 A . 100322222222222444444
   155   11 A . 100322222222224444444
   156   10 A . 100322222222244444444
   157    9 A . 100322222222444444444
   158    8 A . 100322222224444444444
   159    7 A . 100322222244444444444
   160    6 A . 100322222444444444444
   161    5 A . 100322224444444444444
   162    4 A . 100322244444444444444
   163    3 A . 100322444444444444444
   164    2 A . 100324444444444444444
   165    1 A . 100344444444444444444
   166    0 B . 100444444444444444444
   167   -1 B . 102444444444444444444
   168   -2 B . 122444444444444444444
   169   -1 B . 222444444444444444444
   170    0 B . 232444444444444444444
   171    1 B . 233444444444444444444
   172    2 B . 233044444444444444444
   173    3 B . 233004444444444444444
   174    4 B . 233000444444444444444
   175    5 B . 233000044444444444444
   176    6 B . 233000004444444444444
   177    7 B . 233000000444444444444
   178    8 B . 233000000044444444444
   179    9 B . 233000000004444444444
   180   10 B . 233000000000444444444
   181   11 B . 233000000000044444444
   182   12 B . 233000000000004444444
   183   13 B . 233000000000000444444
   184   14 B . 233000000000000044444
   185   15 B . 233000000000000004444
   186   16 B . 233000000000000000444
   187   17 B . 233000000000000000044
   188   18 B . 233000000000000000004
   189   19 B . 2330000000000000000000
   190   18 B . 2330000000000000000002
   191   17 B . 2330000000000000000022
   192   16 B . 2330000000000000000222
   193   15 B . 2330000000000000002222
   194   14 B . 2330000000000000022222
   195   13 B . 2330000000000000222222
   196   12 B . 2330000000000002222222
   197   11 B . 2330000000000022222222
   198   10 B . 2330000000000222222222
   199    9 B . 2330000000002222222222
   200    8 B . 2330000000022222222222

After 200 steps (201 lines): state = B.
Produced     14 nonzeros.
Tape index 8, scanned [-2 .. 19].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 92 7   52 6 27 0   6 26 28
B 108 38 7 20 12 31 1 2 3 5 10
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:12:46 CEST 2010