2-state 5-symbol #g from T.J. & S. Ligocki

Comment: This TM produces 620,906,587 nonzeros in 91,791,666,497,368,316 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 1RH 4LA 4LB 2RA 1 right B 1 right H 4 left A 4 left B 2 right A
B 2LB 2RB 3RB 2RA 0RB 2 left B 2 right B 3 right B 2 right A 0 right B
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     0  1 <B 2
     3     1  2 B> 2
     4     2  2 3 B>
     5     1  2 3 <B 2
     6     2  2 2 A> 2
     7     1  2 2 <A 4
+    9    -1  <A 43
    10     0  1 B> 43
+   13     3  1 03 B>
    14     2  1 03 <B 2
+   17    -1  1 <B 24
    18     0  2 B> 24
+   22     4  2 34 B>
    23     3  2 34 <B 2
    24     4  2 33 2 A> 2
    25     3  2 33 2 <A 4
    26     2  2 33 <A 4 4
    27     1  2 3 3 <B 43
    28     2  2 3 2 A> 43
+   31     5  2 3 24 A>
    32     6  2 3 24 1 B>
    33     5  2 3 24 1 <B 2
    34     6  2 3 25 B> 2
    35     7  2 3 25 3 B>
    36     6  2 3 25 3 <B 2
    37     7  2 3 26 A> 2
    38     6  2 3 26 <A 4
+   44     0  2 3 <A 47
    45    -1  2 <B 48
    46     0  3 B> 48
+   54     8  3 08 B>
    55     7  3 08 <B 2
+   63    -1  3 <B 29
    64     0  2 A> 29
    65    -1  2 <A 4 28
    66    -2  <A 4 4 28
    67    -1  1 B> 4 4 28
+   69     1  1 0 0 B> 28
+   77     9  1 0 0 38 B>
    78     8  1 0 0 38 <B 2
    79     9  1 0 0 37 2 A> 2
    80     8  1 0 0 37 2 <A 4
    81     7  1 0 0 37 <A 4 4
    82     6  1 0 0 36 <B 43
    83     7  1 0 0 35 2 A> 43
+   86    10  1 0 0 35 24 A>
    87    11  1 0 0 35 24 1 B>
    88    10  1 0 0 35 24 1 <B 2
    89    11  1 0 0 35 25 B> 2
    90    12  1 0 0 35 25 3 B>
    91    11  1 0 0 35 25 3 <B 2
    92    12  1 0 0 35 26 A> 2
    93    11  1 0 0 35 26 <A 4
+   99     5  1 0 0 35 <A 47
   100     4  1 0 0 34 <B 48
   101     5  1 0 0 33 2 A> 48
+  109    13  1 0 0 33 29 A>
   110    14  1 0 0 33 29 1 B>
   111    13  1 0 0 33 29 1 <B 2
   112    14  1 0 0 33 210 B> 2
   113    15  1 0 0 33 210 3 B>
   114    14  1 0 0 33 210 3 <B 2
   115    15  1 0 0 33 211 A> 2
   116    14  1 0 0 33 211 <A 4
+  127     3  1 0 0 33 <A 412
   128     2  1 0 0 3 3 <B 413
   129     3  1 0 0 3 2 A> 413
+  142    16  1 0 0 3 214 A>
   143    17  1 0 0 3 214 1 B>
   144    16  1 0 0 3 214 1 <B 2
   145    17  1 0 0 3 215 B> 2
   146    18  1 0 0 3 215 3 B>
   147    17  1 0 0 3 215 3 <B 2
   148    18  1 0 0 3 216 A> 2
   149    17  1 0 0 3 216 <A 4
+  165     1  1 0 0 3 <A 417
   166     0  1 0 0 <B 418
+  168    -2  1 <B 2 2 418
   169    -1  2 B> 2 2 418
+  171     1  2 3 3 B> 418
+  189    19  2 3 3 018 B>
   190    18  2 3 3 018 <B 2
+  208     0  2 3 3 <B 219
   209     1  2 3 2 A> 219
   210     0  2 3 2 <A 4 218
   211    -1  2 3 <A 4 4 218
   212    -2  2 <B 43 218
   213    -1  3 B> 43 218
+  216     2  3 03 B> 218
+  234    20  3 03 318 B>
   235    19  3 03 318 <B 2
   236    20  3 03 317 2 A> 2
   237    19  3 03 317 2 <A 4
   238    18  3 03 317 <A 4 4
   239    17  3 03 316 <B 43
   240    18  3 03 315 2 A> 43
+  243    21  3 03 315 24 A>
   244    22  3 03 315 24 1 B>
   245    21  3 03 315 24 1 <B 2
   246    22  3 03 315 25 B> 2
   247    23  3 03 315 25 3 B>
   248    22  3 03 315 25 3 <B 2
   249    23  3 03 315 26 A> 2
   250    22  3 03 315 26 <A 4
+  256    16  3 03 315 <A 47
   257    15  3 03 314 <B 48
   258    16  3 03 313 2 A> 48
+  266    24  3 03 313 29 A>
   267    25  3 03 313 29 1 B>
   268    24  3 03 313 29 1 <B 2
   269    25  3 03 313 210 B> 2
   270    26  3 03 313 210 3 B>
   271    25  3 03 313 210 3 <B 2
   272    26  3 03 313 211 A> 2
   273    25  3 03 313 211 <A 4
+  284    14  3 03 313 <A 412
   285    13  3 03 312 <B 413
   286    14  3 03 311 2 A> 413
+  299    27  3 03 311 214 A>
   300    28  3 03 311 214 1 B>
   301    27  3 03 311 214 1 <B 2
   302    28  3 03 311 215 B> 2
   303    29  3 03 311 215 3 B>
   304    28  3 03 311 215 3 <B 2
   305    29  3 03 311 216 A> 2
   306    28  3 03 311 216 <A 4
+  322    12  3 03 311 <A 417
   323    11  3 03 310 <B 418
   324    12  3 03 39 2 A> 418
+  342    30  3 03 39 219 A>
   343    31  3 03 39 219 1 B>
   344    30  3 03 39 219 1 <B 2
   345    31  3 03 39 220 B> 2
   346    32  3 03 39 220 3 B>
   347    31  3 03 39 220 3 <B 2
   348    32  3 03 39 221 A> 2
   349    31  3 03 39 221 <A 4
+  370    10  3 03 39 <A 422
   371     9  3 03 38 <B 423
   372    10  3 03 37 2 A> 423
+  395    33  3 03 37 224 A>
   396    34  3 03 37 224 1 B>
   397    33  3 03 37 224 1 <B 2
   398    34  3 03 37 225 B> 2
   399    35  3 03 37 225 3 B>
   400    34  3 03 37 225 3 <B 2
   401    35  3 03 37 226 A> 2
   402    34  3 03 37 226 <A 4
+  428     8  3 03 37 <A 427
   429     7  3 03 36 <B 428
   430     8  3 03 35 2 A> 428
+  458    36  3 03 35 229 A>
   459    37  3 03 35 229 1 B>
   460    36  3 03 35 229 1 <B 2
   461    37  3 03 35 230 B> 2
   462    38  3 03 35 230 3 B>
   463    37  3 03 35 230 3 <B 2
   464    38  3 03 35 231 A> 2
   465    37  3 03 35 231 <A 4
+  496     6  3 03 35 <A 432
   497     5  3 03 34 <B 433
   498     6  3 03 33 2 A> 433
+  531    39  3 03 33 234 A>
   532    40  3 03 33 234 1 B>
   533    39  3 03 33 234 1 <B 2
   534    40  3 03 33 235 B> 2
   535    41  3 03 33 235 3 B>
   536    40  3 03 33 235 3 <B 2
   537    41  3 03 33 236 A> 2
   538    40  3 03 33 236 <A 4
+  574     4  3 03 33 <A 437
   575     3  3 03 3 3 <B 438
   576     4  3 03 3 2 A> 438
+  614    42  3 03 3 239 A>
   615    43  3 03 3 239 1 B>
   616    42  3 03 3 239 1 <B 2
   617    43  3 03 3 240 B> 2
   618    44  3 03 3 240 3 B>
   619    43  3 03 3 240 3 <B 2
   620    44  3 03 3 241 A> 2
   621    43  3 03 3 241 <A 4
+  662     2  3 03 3 <A 442
   663     1  3 03 <B 443
+  666    -2  3 <B 23 443
   667    -1  2 A> 23 443
   668    -2  2 <A 4 2 2 443
   669    -3  <A 4 4 2 2 443
   670    -2  1 B> 4 4 2 2 443
+  672     0  1 0 0 B> 2 2 443
+  674     2  1 0 0 3 3 B> 443
+  717    45  1 0 0 3 3 043 B>
   718    44  1 0 0 3 3 043 <B 2
+  761     1  1 0 0 3 3 <B 244
   762     2  1 0 0 3 2 A> 244
   763     1  1 0 0 3 2 <A 4 243
   764     0  1 0 0 3 <A 4 4 243
   765    -1  1 0 0 <B 43 243
+  767    -3  1 <B 2 2 43 243
   768    -2  2 B> 2 2 43 243

After 768 steps (201 lines): state = B.
Produced     49 nonzeros.
Tape index -2, scanned [-3 .. 45].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 480 16   256 17 191 0   6 26 28
B 288 112 16 49 32 79 1 2 3 5 10
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:12:46 CEST 2010