Comment: This TM produces 620,906,587 nonzeros in 91,791,666,497,368,316 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | 1RB | 1RH | 4LA | 4LB | 2RA | 1 | right | B | 1 | right | H | 4 | left | A | 4 | left | B | 2 | right | A |
| B | 2LB | 2RB | 3RB | 2RA | 0RB | 2 | left | B | 2 | right | B | 3 | right | B | 2 | right | A | 0 | right | B |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <B 2
3 1 2 B> 2
4 2 2 3 B>
5 1 2 3 <B 2
6 2 2 2 A> 2
7 1 2 2 <A 4
+ 9 -1 <A 43
10 0 1 B> 43
+ 13 3 1 03 B>
14 2 1 03 <B 2
+ 17 -1 1 <B 24
18 0 2 B> 24
+ 22 4 2 34 B>
23 3 2 34 <B 2
24 4 2 33 2 A> 2
25 3 2 33 2 <A 4
26 2 2 33 <A 4 4
27 1 2 3 3 <B 43
28 2 2 3 2 A> 43
+ 31 5 2 3 24 A>
32 6 2 3 24 1 B>
33 5 2 3 24 1 <B 2
34 6 2 3 25 B> 2
35 7 2 3 25 3 B>
36 6 2 3 25 3 <B 2
37 7 2 3 26 A> 2
38 6 2 3 26 <A 4
+ 44 0 2 3 <A 47
45 -1 2 <B 48
46 0 3 B> 48
+ 54 8 3 08 B>
55 7 3 08 <B 2
+ 63 -1 3 <B 29
64 0 2 A> 29
65 -1 2 <A 4 28
66 -2 <A 4 4 28
67 -1 1 B> 4 4 28
+ 69 1 1 0 0 B> 28
+ 77 9 1 0 0 38 B>
78 8 1 0 0 38 <B 2
79 9 1 0 0 37 2 A> 2
80 8 1 0 0 37 2 <A 4
81 7 1 0 0 37 <A 4 4
82 6 1 0 0 36 <B 43
83 7 1 0 0 35 2 A> 43
+ 86 10 1 0 0 35 24 A>
87 11 1 0 0 35 24 1 B>
88 10 1 0 0 35 24 1 <B 2
89 11 1 0 0 35 25 B> 2
90 12 1 0 0 35 25 3 B>
91 11 1 0 0 35 25 3 <B 2
92 12 1 0 0 35 26 A> 2
93 11 1 0 0 35 26 <A 4
+ 99 5 1 0 0 35 <A 47
100 4 1 0 0 34 <B 48
101 5 1 0 0 33 2 A> 48
+ 109 13 1 0 0 33 29 A>
110 14 1 0 0 33 29 1 B>
111 13 1 0 0 33 29 1 <B 2
112 14 1 0 0 33 210 B> 2
113 15 1 0 0 33 210 3 B>
114 14 1 0 0 33 210 3 <B 2
115 15 1 0 0 33 211 A> 2
116 14 1 0 0 33 211 <A 4
+ 127 3 1 0 0 33 <A 412
128 2 1 0 0 3 3 <B 413
129 3 1 0 0 3 2 A> 413
+ 142 16 1 0 0 3 214 A>
143 17 1 0 0 3 214 1 B>
144 16 1 0 0 3 214 1 <B 2
145 17 1 0 0 3 215 B> 2
146 18 1 0 0 3 215 3 B>
147 17 1 0 0 3 215 3 <B 2
148 18 1 0 0 3 216 A> 2
149 17 1 0 0 3 216 <A 4
+ 165 1 1 0 0 3 <A 417
166 0 1 0 0 <B 418
+ 168 -2 1 <B 2 2 418
169 -1 2 B> 2 2 418
+ 171 1 2 3 3 B> 418
+ 189 19 2 3 3 018 B>
190 18 2 3 3 018 <B 2
+ 208 0 2 3 3 <B 219
209 1 2 3 2 A> 219
210 0 2 3 2 <A 4 218
211 -1 2 3 <A 4 4 218
212 -2 2 <B 43 218
213 -1 3 B> 43 218
+ 216 2 3 03 B> 218
+ 234 20 3 03 318 B>
235 19 3 03 318 <B 2
236 20 3 03 317 2 A> 2
237 19 3 03 317 2 <A 4
238 18 3 03 317 <A 4 4
239 17 3 03 316 <B 43
240 18 3 03 315 2 A> 43
+ 243 21 3 03 315 24 A>
244 22 3 03 315 24 1 B>
245 21 3 03 315 24 1 <B 2
246 22 3 03 315 25 B> 2
247 23 3 03 315 25 3 B>
248 22 3 03 315 25 3 <B 2
249 23 3 03 315 26 A> 2
250 22 3 03 315 26 <A 4
+ 256 16 3 03 315 <A 47
257 15 3 03 314 <B 48
258 16 3 03 313 2 A> 48
+ 266 24 3 03 313 29 A>
267 25 3 03 313 29 1 B>
268 24 3 03 313 29 1 <B 2
269 25 3 03 313 210 B> 2
270 26 3 03 313 210 3 B>
271 25 3 03 313 210 3 <B 2
272 26 3 03 313 211 A> 2
273 25 3 03 313 211 <A 4
+ 284 14 3 03 313 <A 412
285 13 3 03 312 <B 413
286 14 3 03 311 2 A> 413
+ 299 27 3 03 311 214 A>
300 28 3 03 311 214 1 B>
301 27 3 03 311 214 1 <B 2
302 28 3 03 311 215 B> 2
303 29 3 03 311 215 3 B>
304 28 3 03 311 215 3 <B 2
305 29 3 03 311 216 A> 2
306 28 3 03 311 216 <A 4
+ 322 12 3 03 311 <A 417
323 11 3 03 310 <B 418
324 12 3 03 39 2 A> 418
+ 342 30 3 03 39 219 A>
343 31 3 03 39 219 1 B>
344 30 3 03 39 219 1 <B 2
345 31 3 03 39 220 B> 2
346 32 3 03 39 220 3 B>
347 31 3 03 39 220 3 <B 2
348 32 3 03 39 221 A> 2
349 31 3 03 39 221 <A 4
+ 370 10 3 03 39 <A 422
371 9 3 03 38 <B 423
372 10 3 03 37 2 A> 423
+ 395 33 3 03 37 224 A>
396 34 3 03 37 224 1 B>
397 33 3 03 37 224 1 <B 2
398 34 3 03 37 225 B> 2
399 35 3 03 37 225 3 B>
400 34 3 03 37 225 3 <B 2
401 35 3 03 37 226 A> 2
402 34 3 03 37 226 <A 4
+ 428 8 3 03 37 <A 427
429 7 3 03 36 <B 428
430 8 3 03 35 2 A> 428
+ 458 36 3 03 35 229 A>
459 37 3 03 35 229 1 B>
460 36 3 03 35 229 1 <B 2
461 37 3 03 35 230 B> 2
462 38 3 03 35 230 3 B>
463 37 3 03 35 230 3 <B 2
464 38 3 03 35 231 A> 2
465 37 3 03 35 231 <A 4
+ 496 6 3 03 35 <A 432
497 5 3 03 34 <B 433
498 6 3 03 33 2 A> 433
+ 531 39 3 03 33 234 A>
532 40 3 03 33 234 1 B>
533 39 3 03 33 234 1 <B 2
534 40 3 03 33 235 B> 2
535 41 3 03 33 235 3 B>
536 40 3 03 33 235 3 <B 2
537 41 3 03 33 236 A> 2
538 40 3 03 33 236 <A 4
+ 574 4 3 03 33 <A 437
575 3 3 03 3 3 <B 438
576 4 3 03 3 2 A> 438
+ 614 42 3 03 3 239 A>
615 43 3 03 3 239 1 B>
616 42 3 03 3 239 1 <B 2
617 43 3 03 3 240 B> 2
618 44 3 03 3 240 3 B>
619 43 3 03 3 240 3 <B 2
620 44 3 03 3 241 A> 2
621 43 3 03 3 241 <A 4
+ 662 2 3 03 3 <A 442
663 1 3 03 <B 443
+ 666 -2 3 <B 23 443
667 -1 2 A> 23 443
668 -2 2 <A 4 2 2 443
669 -3 <A 4 4 2 2 443
670 -2 1 B> 4 4 2 2 443
+ 672 0 1 0 0 B> 2 2 443
+ 674 2 1 0 0 3 3 B> 443
+ 717 45 1 0 0 3 3 043 B>
718 44 1 0 0 3 3 043 <B 2
+ 761 1 1 0 0 3 3 <B 244
762 2 1 0 0 3 2 A> 244
763 1 1 0 0 3 2 <A 4 243
764 0 1 0 0 3 <A 4 4 243
765 -1 1 0 0 <B 43 243
+ 767 -3 1 <B 2 2 43 243
768 -2 2 B> 2 2 43 243
After 768 steps (201 lines): state = B.
Produced 49 nonzeros.
Tape index -2, scanned [-3 .. 45].
| State | Count | Execution count | First in step | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
| A | 480 | 16 | 256 | 17 | 191 | 0 | 6 | 26 | 28 | ||
| B | 288 | 112 | 16 | 49 | 32 | 79 | 1 | 2 | 3 | 5 | 10 |