Comment: This TM produces 620,906,587 nonzeros in 91,791,666,497,368,316 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | 1RB | 1RH | 4LA | 4LB | 2RA | 1 | right | B | 1 | right | H | 4 | left | A | 4 | left | B | 2 | right | A |
B | 2LB | 2RB | 3RB | 2RA | 0RB | 2 | left | B | 2 | right | B | 3 | right | B | 2 | right | A | 0 | right | B |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-bck-macro machine. The same TM as 1-bck-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <B 2 3 1 2 B> 2 4 2 2 3 B> 5 1 2 3 <B 2 6 2 2 2 A> 2 7 1 2 2 <A 4 + 9 -1 <A 43 10 0 1 B> 43 + 13 3 1 03 B> 14 2 1 03 <B 2 + 17 -1 1 <B 24 18 0 2 B> 24 + 22 4 2 34 B> 23 3 2 34 <B 2 24 4 2 33 2 A> 2 25 3 2 33 2 <A 4 26 2 2 33 <A 4 4 27 1 2 3 3 <B 43 28 2 2 3 2 A> 43 + 31 5 2 3 24 A> 32 6 2 3 24 1 B> 33 5 2 3 24 1 <B 2 34 6 2 3 25 B> 2 35 7 2 3 25 3 B> 36 6 2 3 25 3 <B 2 37 7 2 3 26 A> 2 38 6 2 3 26 <A 4 + 44 0 2 3 <A 47 45 -1 2 <B 48 46 0 3 B> 48 + 54 8 3 08 B> 55 7 3 08 <B 2 + 63 -1 3 <B 29 64 0 2 A> 29 65 -1 2 <A 4 28 66 -2 <A 4 4 28 67 -1 1 B> 4 4 28 + 69 1 1 0 0 B> 28 + 77 9 1 0 0 38 B> 78 8 1 0 0 38 <B 2 79 9 1 0 0 37 2 A> 2 80 8 1 0 0 37 2 <A 4 81 7 1 0 0 37 <A 4 4 82 6 1 0 0 36 <B 43 83 7 1 0 0 35 2 A> 43 + 86 10 1 0 0 35 24 A> 87 11 1 0 0 35 24 1 B> 88 10 1 0 0 35 24 1 <B 2 89 11 1 0 0 35 25 B> 2 90 12 1 0 0 35 25 3 B> 91 11 1 0 0 35 25 3 <B 2 92 12 1 0 0 35 26 A> 2 93 11 1 0 0 35 26 <A 4 + 99 5 1 0 0 35 <A 47 100 4 1 0 0 34 <B 48 101 5 1 0 0 33 2 A> 48 + 109 13 1 0 0 33 29 A> 110 14 1 0 0 33 29 1 B> 111 13 1 0 0 33 29 1 <B 2 112 14 1 0 0 33 210 B> 2 113 15 1 0 0 33 210 3 B> 114 14 1 0 0 33 210 3 <B 2 115 15 1 0 0 33 211 A> 2 116 14 1 0 0 33 211 <A 4 + 127 3 1 0 0 33 <A 412 128 2 1 0 0 3 3 <B 413 129 3 1 0 0 3 2 A> 413 + 142 16 1 0 0 3 214 A> 143 17 1 0 0 3 214 1 B> 144 16 1 0 0 3 214 1 <B 2 145 17 1 0 0 3 215 B> 2 146 18 1 0 0 3 215 3 B> 147 17 1 0 0 3 215 3 <B 2 148 18 1 0 0 3 216 A> 2 149 17 1 0 0 3 216 <A 4 + 165 1 1 0 0 3 <A 417 166 0 1 0 0 <B 418 + 168 -2 1 <B 2 2 418 169 -1 2 B> 2 2 418 + 171 1 2 3 3 B> 418 + 189 19 2 3 3 018 B> 190 18 2 3 3 018 <B 2 + 208 0 2 3 3 <B 219 209 1 2 3 2 A> 219 210 0 2 3 2 <A 4 218 211 -1 2 3 <A 4 4 218 212 -2 2 <B 43 218 213 -1 3 B> 43 218 + 216 2 3 03 B> 218 + 234 20 3 03 318 B> 235 19 3 03 318 <B 2 236 20 3 03 317 2 A> 2 237 19 3 03 317 2 <A 4 238 18 3 03 317 <A 4 4 239 17 3 03 316 <B 43 240 18 3 03 315 2 A> 43 + 243 21 3 03 315 24 A> 244 22 3 03 315 24 1 B> 245 21 3 03 315 24 1 <B 2 246 22 3 03 315 25 B> 2 247 23 3 03 315 25 3 B> 248 22 3 03 315 25 3 <B 2 249 23 3 03 315 26 A> 2 250 22 3 03 315 26 <A 4 + 256 16 3 03 315 <A 47 257 15 3 03 314 <B 48 258 16 3 03 313 2 A> 48 + 266 24 3 03 313 29 A> 267 25 3 03 313 29 1 B> 268 24 3 03 313 29 1 <B 2 269 25 3 03 313 210 B> 2 270 26 3 03 313 210 3 B> 271 25 3 03 313 210 3 <B 2 272 26 3 03 313 211 A> 2 273 25 3 03 313 211 <A 4 + 284 14 3 03 313 <A 412 285 13 3 03 312 <B 413 286 14 3 03 311 2 A> 413 + 299 27 3 03 311 214 A> 300 28 3 03 311 214 1 B> 301 27 3 03 311 214 1 <B 2 302 28 3 03 311 215 B> 2 303 29 3 03 311 215 3 B> 304 28 3 03 311 215 3 <B 2 305 29 3 03 311 216 A> 2 306 28 3 03 311 216 <A 4 + 322 12 3 03 311 <A 417 323 11 3 03 310 <B 418 324 12 3 03 39 2 A> 418 + 342 30 3 03 39 219 A> 343 31 3 03 39 219 1 B> 344 30 3 03 39 219 1 <B 2 345 31 3 03 39 220 B> 2 346 32 3 03 39 220 3 B> 347 31 3 03 39 220 3 <B 2 348 32 3 03 39 221 A> 2 349 31 3 03 39 221 <A 4 + 370 10 3 03 39 <A 422 371 9 3 03 38 <B 423 372 10 3 03 37 2 A> 423 + 395 33 3 03 37 224 A> 396 34 3 03 37 224 1 B> 397 33 3 03 37 224 1 <B 2 398 34 3 03 37 225 B> 2 399 35 3 03 37 225 3 B> 400 34 3 03 37 225 3 <B 2 401 35 3 03 37 226 A> 2 402 34 3 03 37 226 <A 4 + 428 8 3 03 37 <A 427 429 7 3 03 36 <B 428 430 8 3 03 35 2 A> 428 + 458 36 3 03 35 229 A> 459 37 3 03 35 229 1 B> 460 36 3 03 35 229 1 <B 2 461 37 3 03 35 230 B> 2 462 38 3 03 35 230 3 B> 463 37 3 03 35 230 3 <B 2 464 38 3 03 35 231 A> 2 465 37 3 03 35 231 <A 4 + 496 6 3 03 35 <A 432 497 5 3 03 34 <B 433 498 6 3 03 33 2 A> 433 + 531 39 3 03 33 234 A> 532 40 3 03 33 234 1 B> 533 39 3 03 33 234 1 <B 2 534 40 3 03 33 235 B> 2 535 41 3 03 33 235 3 B> 536 40 3 03 33 235 3 <B 2 537 41 3 03 33 236 A> 2 538 40 3 03 33 236 <A 4 + 574 4 3 03 33 <A 437 575 3 3 03 3 3 <B 438 576 4 3 03 3 2 A> 438 + 614 42 3 03 3 239 A> 615 43 3 03 3 239 1 B> 616 42 3 03 3 239 1 <B 2 617 43 3 03 3 240 B> 2 618 44 3 03 3 240 3 B> 619 43 3 03 3 240 3 <B 2 620 44 3 03 3 241 A> 2 621 43 3 03 3 241 <A 4 + 662 2 3 03 3 <A 442 663 1 3 03 <B 443 + 666 -2 3 <B 23 443 667 -1 2 A> 23 443 668 -2 2 <A 4 2 2 443 669 -3 <A 4 4 2 2 443 670 -2 1 B> 4 4 2 2 443 + 672 0 1 0 0 B> 2 2 443 + 674 2 1 0 0 3 3 B> 443 + 717 45 1 0 0 3 3 043 B> 718 44 1 0 0 3 3 043 <B 2 + 761 1 1 0 0 3 3 <B 244 762 2 1 0 0 3 2 A> 244 763 1 1 0 0 3 2 <A 4 243 764 0 1 0 0 3 <A 4 4 243 765 -1 1 0 0 <B 43 243 + 767 -3 1 <B 2 2 43 243 768 -2 2 B> 2 2 43 243 After 768 steps (201 lines): state = B. Produced 49 nonzeros. Tape index -2, scanned [-3 .. 45].
State | Count | Execution count | First in step | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
A | 480 | 16 | 256 | 17 | 191 | 0 | 6 | 26 | 28 | ||
B | 288 | 112 | 16 | 49 | 32 | 79 | 1 | 2 | 3 | 5 | 10 |