2-state 5-symbol TM #g (G. Lafitte & C. Papazian)

Comment: This TM produces 1,137,477 nonzeros in 924,180,005,181 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A B1R A3R A1L B1L B3L 1 right B 3 right A 1 left A 1 left B 3 left B
B A2L B4L A3R B2R Z1R 2 left A 4 left B 3 right A 2 right B 1 right Z
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as bck-macro machine.
The same TM as bck-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . 0
     1    1 B . . 10
     2    0 A . . 12
     3    1 A . . 32
     4    0 A . . 31
     5   -1 B . .011
     6   -2 A . 0211
     7   -1 B . 1211
     8    0 A . 1311
     9    1 A . 1331
    10    2 A . 13330
    11    3 B . 133310
    12    2 A . 133312
    13    3 A . 133332
    14    2 A . 133331
    15    1 B . 133311
    16    2 B . 133211
    17    1 B . 133241
    18    2 A . 133341
    19    1 B . 133331
    20    2 B . 133231
    21    3 B . 133221
    22    2 B . 133224
    23    3 A . 133234
    24    2 B . 133233
    25    3 B . 133223
    26    4 B . 1332220
    27    3 A . 1332222
    28    2 A . 1332212
    29    1 A . 1332112
    30    0 A . 1331112
    31   -1 B . 1311112
    32    0 B . 1211112
    33   -1 B . 1241112
    34    0 A . 1341112
    35   -1 B . 1331112
    36    0 B . 1231112
    37    1 B . 1221112
    38    0 B . 1224112
    39    1 A . 1234112
    40    0 B . 1233112
    41    1 B . 1223112
    42    2 B . 1222112
    43    1 B . 1222412
    44    2 A . 1223412
    45    1 B . 1223312
    46    2 B . 1222312
    47    3 B . 1222212
    48    2 B . 1222242
    49    3 A . 1222342
    50    2 B . 1222332
    51    3 B . 1222232
    52    4 B . 1222222
    53    5 A . 12222230
    54    6 B . 122222310
    55    5 A . 122222312
    56    6 A . 122222332
    57    5 A . 122222331
    58    4 B . 122222311
    59    5 B . 122222211
    60    4 B . 122222241
    61    5 A . 122222341
    62    4 B . 122222331
    63    5 B . 122222231
    64    6 B . 122222221
    65    5 B . 122222224
    66    6 A . 122222234
    67    5 B . 122222233
    68    6 B . 122222223
    69    7 B . 1222222220
    70    6 A . 1222222222
    71    5 A . 1222222212
    72    4 A . 1222222112
    73    3 A . 1222221112
    74    2 A . 1222211112
    75    1 A . 1222111112
    76    0 A . 1221111112
    77   -1 A . 1211111112
    78   -2 A . 1111111112
    79   -1 A . 3111111112
    80    0 A . 3311111112
    81    1 A . 3331111112
    82    2 A . 3333111112
    83    3 A . 3333311112
    84    4 A . 3333331112
    85    5 A . 3333333112
    86    6 A . 3333333312
    87    7 A . 3333333332
    88    6 A . 3333333331
    89    5 B . 3333333311
    90    6 B . 3333333211
    91    5 B . 3333333241
    92    6 A . 3333333341
    93    5 B . 3333333331
    94    6 B . 3333333231
    95    7 B . 3333333221
    96    6 B . 3333333224
    97    7 A . 3333333234
    98    6 B . 3333333233
    99    7 B . 3333333223
   100    8 B . 33333332220
   101    7 A . 33333332222
   102    6 A . 33333332212
   103    5 A . 33333332112
   104    4 A . 33333331112
   105    3 B . 33333311112
   106    4 B . 33333211112
   107    3 B . 33333241112
   108    4 A . 33333341112
   109    3 B . 33333331112
   110    4 B . 33333231112
   111    5 B . 33333221112
   112    4 B . 33333224112
   113    5 A . 33333234112
   114    4 B . 33333233112
   115    5 B . 33333223112
   116    6 B . 33333222112
   117    5 B . 33333222412
   118    6 A . 33333223412
   119    5 B . 33333223312
   120    6 B . 33333222312
   121    7 B . 33333222212
   122    6 B . 33333222242
   123    7 A . 33333222342
   124    6 B . 33333222332
   125    7 B . 33333222232
   126    8 B . 33333222222
   127    9 A . 333332222230
   128   10 B . 3333322222310
   129    9 A . 3333322222312
   130   10 A . 3333322222332
   131    9 A . 3333322222331
   132    8 B . 3333322222311
   133    9 B . 3333322222211
   134    8 B . 3333322222241
   135    9 A . 3333322222341
   136    8 B . 3333322222331
   137    9 B . 3333322222231
   138   10 B . 3333322222221
   139    9 B . 3333322222224
   140   10 A . 3333322222234
   141    9 B . 3333322222233
   142   10 B . 3333322222223
   143   11 B . 33333222222220
   144   10 A . 33333222222222
   145    9 A . 33333222222212
   146    8 A . 33333222222112
   147    7 A . 33333222221112
   148    6 A . 33333222211112
   149    5 A . 33333222111112
   150    4 A . 33333221111112
   151    3 A . 33333211111112
   152    2 A . 33333111111112
   153    1 B . 33331111111112
   154    2 B . 33321111111112
   155    1 B . 33324111111112
   156    2 A . 33334111111112
   157    1 B . 33333111111112
   158    2 B . 33323111111112
   159    3 B . 33322111111112
   160    2 B . 33322411111112
   161    3 A . 33323411111112
   162    2 B . 33323311111112
   163    3 B . 33322311111112
   164    4 B . 33322211111112
   165    3 B . 33322241111112
   166    4 A . 33322341111112
   167    3 B . 33322331111112
   168    4 B . 33322231111112
   169    5 B . 33322221111112
   170    4 B . 33322224111112
   171    5 A . 33322234111112
   172    4 B . 33322233111112
   173    5 B . 33322223111112
   174    6 B . 33322222111112
   175    5 B . 33322222411112
   176    6 A . 33322223411112
   177    5 B . 33322223311112
   178    6 B . 33322222311112
   179    7 B . 33322222211112
   180    6 B . 33322222241112
   181    7 A . 33322222341112
   182    6 B . 33322222331112
   183    7 B . 33322222231112
   184    8 B . 33322222221112
   185    7 B . 33322222224112
   186    8 A . 33322222234112
   187    7 B . 33322222233112
   188    8 B . 33322222223112
   189    9 B . 33322222222112
   190    8 B . 33322222222412
   191    9 A . 33322222223412
   192    8 B . 33322222223312
   193    9 B . 33322222222312
   194   10 B . 33322222222212
   195    9 B . 33322222222242
   196   10 A . 33322222222342
   197    9 B . 33322222222332
   198   10 B . 33322222222232
   199   11 B . 33322222222222
   200   12 A . 333222222222230

After 200 steps (201 lines): state = A.
Produced     14 nonzeros.
Tape index 12, scanned [-2 .. 11].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 80 5 15 27 8 25 0 2 3 4 18
B 120 9 25 29 57   1 16 7 15  
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as bck-macro machine.
The same TM as bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:12:03 CEST 2010