2-state 5-symbol TM #g (G. Lafitte & C. Papazian)

Comment: This TM produces 1,137,477 nonzeros in 924,180,005,181 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A B1R A3R A1L B1L B3L 1 right B 3 right A 1 left A 1 left B 3 left B
B A2L B4L A3R B2R Z1R 2 left A 4 left B 3 right A 2 right B 1 right Z
Transition table
The same TM just simple.
Simulation is done with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as bck-macro machine.
The same TM as bck-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . 0
     1    1 B . . 10
     2    0 A . . 12
     3    1 A . . 32
     4    0 A . . 31
     5   -1 B . .011
     6   -2 A . 0211
     7   -1 B . 1211
     8    0 A . 1311
+   10    2 A . 13330   by A/1 * 2
    11    3 B . 133310
    12    2 A . 133312
    13    3 A . 133332
    14    2 A . 133331
    15    1 B . 133311
    16    2 B . 133211
    17    1 B . 133241
    18    2 A . 133341
    19    1 B . 133331
+   21    3 B . 133221   by B/3 * 2
    22    2 B . 133224
    23    3 A . 133234
    24    2 B . 133233
+   26    4 B . 1332220   by B/3 * 2
    27    3 A . 1332222
+   30    0 A . 1331112  by A/2 * 3
    31   -1 B . 1311112
    32    0 B . 1211112
    33   -1 B . 1241112
    34    0 A . 1341112
    35   -1 B . 1331112
+   37    1 B . 1221112  by B/3 * 2
    38    0 B . 1224112
    39    1 A . 1234112
    40    0 B . 1233112
+   42    2 B . 1222112  by B/3 * 2
    43    1 B . 1222412
    44    2 A . 1223412
    45    1 B . 1223312
+   47    3 B . 1222212  by B/3 * 2
    48    2 B . 1222242
    49    3 A . 1222342
    50    2 B . 1222332
+   52    4 B . 1222222  by B/3 * 2
    53    5 A . 12222230
    54    6 B . 122222310
    55    5 A . 122222312
    56    6 A . 122222332
    57    5 A . 122222331
    58    4 B . 122222311
    59    5 B . 122222211
    60    4 B . 122222241
    61    5 A . 122222341
    62    4 B . 122222331
+   64    6 B . 122222221  by B/3 * 2
    65    5 B . 122222224
    66    6 A . 122222234
    67    5 B . 122222233
+   69    7 B . 1222222220  by B/3 * 2
    70    6 A . 1222222222
+   78   -2 A . 1111111112   by A/2 * 8
+   87    7 A . 3333333332   by A/1 * 9
    88    6 A . 3333333331
    89    5 B . 3333333311
    90    6 B . 3333333211
    91    5 B . 3333333241
    92    6 A . 3333333341
    93    5 B . 3333333331
+   95    7 B . 3333333221   by B/3 * 2
    96    6 B . 3333333224
    97    7 A . 3333333234
    98    6 B . 3333333233
+  100    8 B . 33333332220   by B/3 * 2
   101    7 A . 33333332222
+  104    4 A . 33333331112  by A/2 * 3
   105    3 B . 33333311112
   106    4 B . 33333211112
   107    3 B . 33333241112
   108    4 A . 33333341112
   109    3 B . 33333331112
+  111    5 B . 33333221112  by B/3 * 2
   112    4 B . 33333224112
   113    5 A . 33333234112
   114    4 B . 33333233112
+  116    6 B . 33333222112  by B/3 * 2
   117    5 B . 33333222412
   118    6 A . 33333223412
   119    5 B . 33333223312
+  121    7 B . 33333222212  by B/3 * 2
   122    6 B . 33333222242
   123    7 A . 33333222342
   124    6 B . 33333222332
+  126    8 B . 33333222222  by B/3 * 2
   127    9 A . 333332222230
   128   10 B . 3333322222310
   129    9 A . 3333322222312
   130   10 A . 3333322222332
   131    9 A . 3333322222331
   132    8 B . 3333322222311
   133    9 B . 3333322222211
   134    8 B . 3333322222241
   135    9 A . 3333322222341
   136    8 B . 3333322222331
+  138   10 B . 3333322222221  by B/3 * 2
   139    9 B . 3333322222224
   140   10 A . 3333322222234
   141    9 B . 3333322222233
+  143   11 B . 33333222222220  by B/3 * 2
   144   10 A . 33333222222222
+  152    2 A . 33333111111112   by A/2 * 8
   153    1 B . 33331111111112
   154    2 B . 33321111111112
   155    1 B . 33324111111112
   156    2 A . 33334111111112
   157    1 B . 33333111111112
+  159    3 B . 33322111111112   by B/3 * 2
   160    2 B . 33322411111112
   161    3 A . 33323411111112
   162    2 B . 33323311111112
+  164    4 B . 33322211111112   by B/3 * 2
   165    3 B . 33322241111112
   166    4 A . 33322341111112
   167    3 B . 33322331111112
+  169    5 B . 33322221111112   by B/3 * 2
   170    4 B . 33322224111112
   171    5 A . 33322234111112
   172    4 B . 33322233111112
+  174    6 B . 33322222111112   by B/3 * 2
   175    5 B . 33322222411112
   176    6 A . 33322223411112
   177    5 B . 33322223311112
+  179    7 B . 33322222211112   by B/3 * 2
   180    6 B . 33322222241112
   181    7 A . 33322222341112
   182    6 B . 33322222331112
+  184    8 B . 33322222221112   by B/3 * 2
   185    7 B . 33322222224112
   186    8 A . 33322222234112
   187    7 B . 33322222233112
+  189    9 B . 33322222222112   by B/3 * 2
   190    8 B . 33322222222412
   191    9 A . 33322222223412
   192    8 B . 33322222223312
+  194   10 B . 33322222222212   by B/3 * 2
   195    9 B . 33322222222242
   196   10 A . 33322222222342
   197    9 B . 33322222222332
+  199   11 B . 33322222222222   by B/3 * 2
   200   12 A . 333222222222230
   201   13 B . 3332222222222310
   202   12 A . 3332222222222312
   203   13 A . 3332222222222332
   204   12 A . 3332222222222331
   205   11 B . 3332222222222311
   206   12 B . 3332222222222211
   207   11 B . 3332222222222241
   208   12 A . 3332222222222341
   209   11 B . 3332222222222331
+  211   13 B . 3332222222222221   by B/3 * 2
   212   12 B . 3332222222222224
   213   13 A . 3332222222222234
   214   12 B . 3332222222222233
+  216   14 B . 33322222222222220   by B/3 * 2
   217   13 A . 33322222222222222
+  230    0 A . 33311111111111112  by A/2 * 13
   231   -1 B . 33111111111111112
   232    0 B . 32111111111111112
   233   -1 B . 32411111111111112
   234    0 A . 33411111111111112
   235   -1 B . 33311111111111112
+  237    1 B . 32211111111111112  by B/3 * 2
   238    0 B . 32241111111111112
   239    1 A . 32341111111111112
   240    0 B . 32331111111111112
+  242    2 B . 32221111111111112  by B/3 * 2
   243    1 B . 32224111111111112
   244    2 A . 32234111111111112
   245    1 B . 32233111111111112
+  247    3 B . 32222111111111112  by B/3 * 2
   248    2 B . 32222411111111112
   249    3 A . 32223411111111112
   250    2 B . 32223311111111112
+  252    4 B . 32222211111111112  by B/3 * 2
   253    3 B . 32222241111111112
   254    4 A . 32222341111111112
   255    3 B . 32222331111111112
+  257    5 B . 32222221111111112  by B/3 * 2
   258    4 B . 32222224111111112
   259    5 A . 32222234111111112
   260    4 B . 32222233111111112
+  262    6 B . 32222222111111112  by B/3 * 2
   263    5 B . 32222222411111112
   264    6 A . 32222223411111112
   265    5 B . 32222223311111112
+  267    7 B . 32222222211111112  by B/3 * 2
   268    6 B . 32222222241111112
   269    7 A . 32222222341111112
   270    6 B . 32222222331111112
+  272    8 B . 32222222221111112  by B/3 * 2
   273    7 B . 32222222224111112
   274    8 A . 32222222234111112

After 274 steps (201 lines): state = A.
Produced     17 nonzeros.
Tape index 8, scanned [-2 .. 14].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 108 6 16 41 10 35 0 2 3 4 18
B 166 11 36 40 79   1 16 7 15  
Execution statistics

The same TM just simple.
The same TM with tape symbol exponents.
The same TM as bck-macro machine.
The same TM as bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:12:03 CEST 2010