2-state 5-symbol TM #g (G. Lafitte & C. Papazian)

Comment: This TM produces 1,137,477 nonzeros in 924,180,005,181 steps.

State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A B1R A3R A1L B1L B3L 1 right B 3 right A 1 left A 1 left B 3 left B
B A2L B4L A3R B2R Z1R 2 left A 4 left B 3 right A 2 right B 1 right Z
Transition table
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as bck-macro machine.
The same TM as bck-macro machine with pure additive config-TRs.

Pushing initial machine.
Pushing BCK machine.

Steps BasSteps BasTpos  Tape contents
    0        0       0  (0)A>
    1        1       1  (1)B>
    2        5      -1  <B(1) 1
    3        6      -2  <A(2) 12
    4        8       0  1 (3)A> 12
    5       10       2  1 32 (3)A>
    6       11       3  1 33 (1)B>
    7       15       1  1 33 <B(1) 1
    8       21       3  1 32 2 (2)B> 1
    9       26       4  1 32 22 (2)B>
   10       28       2  1 32 22 <A(1) 2
   11       30       0  1 32 <A(1) 12 2
   12       31      -1  1 3 <B(1) 13 2
   13       37       1  1 2 (2)B> 13 2
   14       52       4  1 24 (2)B> 2
   15       53       5  1 25 (3)A>
   16       54       6  1 25 3 (1)B>
   17       58       4  1 25 3 <B(1) 1
   18       64       6  1 26 (2)B> 1
   19       69       7  1 27 (2)B>
   20       71       5  1 27 <A(1) 2
   21       78      -2  1 <A(1) 17 2
   22       80       0  3 (3)A> 17 2
   23       87       7  38 (3)A> 2
   24       89       5  38 <B(1) 1
   25       95       7  37 2 (2)B> 1
   26      100       8  37 22 (2)B>
   27      102       6  37 22 <A(1) 2
   28      104       4  37 <A(1) 12 2
   29      105       3  36 <B(1) 13 2
   30      111       5  35 2 (2)B> 13 2
   31      126       8  35 24 (2)B> 2
   32      127       9  35 25 (3)A>
   33      128      10  35 25 3 (1)B>
   34      132       8  35 25 3 <B(1) 1
   35      138      10  35 26 (2)B> 1
   36      143      11  35 27 (2)B>
   37      145       9  35 27 <A(1) 2
   38      152       2  35 <A(1) 17 2
   39      153       1  34 <B(1) 18 2
   40      159       3  33 2 (2)B> 18 2
   41      199      11  33 29 (2)B> 2
   42      200      12  33 210 (3)A>
   43      201      13  33 210 3 (1)B>
   44      205      11  33 210 3 <B(1) 1
   45      211      13  33 211 (2)B> 1
   46      216      14  33 212 (2)B>
   47      218      12  33 212 <A(1) 2
   48      230       0  33 <A(1) 112 2
   49      231      -1  32 <B(1) 113 2
   50      237       1  3 2 (2)B> 113 2
   51      302      14  3 214 (2)B> 2
   52      303      15  3 215 (3)A>
   53      304      16  3 215 3 (1)B>
   54      308      14  3 215 3 <B(1) 1
   55      314      16  3 216 (2)B> 1
   56      319      17  3 217 (2)B>
   57      321      15  3 217 <A(1) 2
   58      338      -2  3 <A(1) 117 2
   59      339      -3  <B(1) 118 2
   60      340      -4  <A(2) 119 2
   61      342      -2  1 (3)A> 119 2
   62      361      17  1 319 (3)A> 2
   63      363      15  1 319 <B(1) 1
   64      369      17  1 318 2 (2)B> 1
   65      374      18  1 318 22 (2)B>
   66      376      16  1 318 22 <A(1) 2
   67      378      14  1 318 <A(1) 12 2
   68      379      13  1 317 <B(1) 13 2
   69      385      15  1 316 2 (2)B> 13 2
   70      400      18  1 316 24 (2)B> 2
   71      401      19  1 316 25 (3)A>
   72      402      20  1 316 25 3 (1)B>
   73      406      18  1 316 25 3 <B(1) 1
   74      412      20  1 316 26 (2)B> 1
   75      417      21  1 316 27 (2)B>
   76      419      19  1 316 27 <A(1) 2
   77      426      12  1 316 <A(1) 17 2
   78      427      11  1 315 <B(1) 18 2
   79      433      13  1 314 2 (2)B> 18 2
   80      473      21  1 314 29 (2)B> 2
   81      474      22  1 314 210 (3)A>
   82      475      23  1 314 210 3 (1)B>
   83      479      21  1 314 210 3 <B(1) 1
   84      485      23  1 314 211 (2)B> 1
   85      490      24  1 314 212 (2)B>
   86      492      22  1 314 212 <A(1) 2
   87      504      10  1 314 <A(1) 112 2
   88      505       9  1 313 <B(1) 113 2
   89      511      11  1 312 2 (2)B> 113 2
   90      576      24  1 312 214 (2)B> 2
   91      577      25  1 312 215 (3)A>
   92      578      26  1 312 215 3 (1)B>
   93      582      24  1 312 215 3 <B(1) 1
   94      588      26  1 312 216 (2)B> 1
   95      593      27  1 312 217 (2)B>
   96      595      25  1 312 217 <A(1) 2
   97      612       8  1 312 <A(1) 117 2
   98      613       7  1 311 <B(1) 118 2
   99      619       9  1 310 2 (2)B> 118 2
  100      709      27  1 310 219 (2)B> 2
  101      710      28  1 310 220 (3)A>
  102      711      29  1 310 220 3 (1)B>
  103      715      27  1 310 220 3 <B(1) 1
  104      721      29  1 310 221 (2)B> 1
  105      726      30  1 310 222 (2)B>
  106      728      28  1 310 222 <A(1) 2
  107      750       6  1 310 <A(1) 122 2
  108      751       5  1 39 <B(1) 123 2
  109      757       7  1 38 2 (2)B> 123 2
  110      872      30  1 38 224 (2)B> 2
  111      873      31  1 38 225 (3)A>
  112      874      32  1 38 225 3 (1)B>
  113      878      30  1 38 225 3 <B(1) 1
  114      884      32  1 38 226 (2)B> 1
  115      889      33  1 38 227 (2)B>
  116      891      31  1 38 227 <A(1) 2
  117      918       4  1 38 <A(1) 127 2
  118      919       3  1 37 <B(1) 128 2
  119      925       5  1 36 2 (2)B> 128 2
  120     1065      33  1 36 229 (2)B> 2
  121     1066      34  1 36 230 (3)A>
  122     1067      35  1 36 230 3 (1)B>
  123     1071      33  1 36 230 3 <B(1) 1
  124     1077      35  1 36 231 (2)B> 1
  125     1082      36  1 36 232 (2)B>
  126     1084      34  1 36 232 <A(1) 2
  127     1116       2  1 36 <A(1) 132 2
  128     1117       1  1 35 <B(1) 133 2
  129     1123       3  1 34 2 (2)B> 133 2
  130     1288      36  1 34 234 (2)B> 2
  131     1289      37  1 34 235 (3)A>
  132     1290      38  1 34 235 3 (1)B>
  133     1294      36  1 34 235 3 <B(1) 1
  134     1300      38  1 34 236 (2)B> 1
  135     1305      39  1 34 237 (2)B>
  136     1307      37  1 34 237 <A(1) 2
  137     1344       0  1 34 <A(1) 137 2
  138     1345      -1  1 33 <B(1) 138 2
  139     1351       1  1 32 2 (2)B> 138 2
  140     1541      39  1 32 239 (2)B> 2
  141     1542      40  1 32 240 (3)A>
  142     1543      41  1 32 240 3 (1)B>
  143     1547      39  1 32 240 3 <B(1) 1
  144     1553      41  1 32 241 (2)B> 1
  145     1558      42  1 32 242 (2)B>
  146     1560      40  1 32 242 <A(1) 2
  147     1602      -2  1 32 <A(1) 142 2
  148     1603      -3  1 3 <B(1) 143 2
  149     1609      -1  1 2 (2)B> 143 2
  150     1824      42  1 244 (2)B> 2
  151     1825      43  1 245 (3)A>
  152     1826      44  1 245 3 (1)B>
  153     1830      42  1 245 3 <B(1) 1
  154     1836      44  1 246 (2)B> 1
  155     1841      45  1 247 (2)B>
  156     1843      43  1 247 <A(1) 2
  157     1890      -4  1 <A(1) 147 2
  158     1892      -2  3 (3)A> 147 2
  159     1939      45  348 (3)A> 2
  160     1941      43  348 <B(1) 1
  161     1947      45  347 2 (2)B> 1
  162     1952      46  347 22 (2)B>
  163     1954      44  347 22 <A(1) 2
  164     1956      42  347 <A(1) 12 2
  165     1957      41  346 <B(1) 13 2
  166     1963      43  345 2 (2)B> 13 2
  167     1978      46  345 24 (2)B> 2
  168     1979      47  345 25 (3)A>
  169     1980      48  345 25 3 (1)B>
  170     1984      46  345 25 3 <B(1) 1
  171     1990      48  345 26 (2)B> 1
  172     1995      49  345 27 (2)B>
  173     1997      47  345 27 <A(1) 2
  174     2004      40  345 <A(1) 17 2
  175     2005      39  344 <B(1) 18 2
  176     2011      41  343 2 (2)B> 18 2
  177     2051      49  343 29 (2)B> 2
  178     2052      50  343 210 (3)A>
  179     2053      51  343 210 3 (1)B>
  180     2057      49  343 210 3 <B(1) 1
  181     2063      51  343 211 (2)B> 1
  182     2068      52  343 212 (2)B>
  183     2070      50  343 212 <A(1) 2
  184     2082      38  343 <A(1) 112 2
  185     2083      37  342 <B(1) 113 2
  186     2089      39  341 2 (2)B> 113 2
  187     2154      52  341 214 (2)B> 2
  188     2155      53  341 215 (3)A>
  189     2156      54  341 215 3 (1)B>
  190     2160      52  341 215 3 <B(1) 1
  191     2166      54  341 216 (2)B> 1
  192     2171      55  341 217 (2)B>
  193     2173      53  341 217 <A(1) 2
  194     2190      36  341 <A(1) 117 2
  195     2191      35  340 <B(1) 118 2
  196     2197      37  339 2 (2)B> 118 2
  197     2287      55  339 219 (2)B> 2
  198     2288      56  339 220 (3)A>
  199     2289      57  339 220 3 (1)B>
  200     2293      55  339 220 3 <B(1) 1

Lines:       201
Top steps:   200
Macro steps: 200
Basic steps: 2293
Tape index:  55
nonzeros:    62
log10(nonzeros):    1.792
log10(steps   ):    3.360

The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Input to awk program:
    gohalt 1
    nbs 5
    T 2-state 5-symbol TM #g (G. Lafitte & C. Papazian)
    5T  B1R A3R A1L B1L B3L  A2L B4L A3R B2R Z1R
    : 1,137,477 924,180,005,181 
    L 4
    M	201
    pref	sim
    machv Laf25_g  	just simple
    machv Laf25_g-r	with repetitions reduced
    machv Laf25_g-1	with tape symbol exponents
    machv Laf25_g-m	as bck-macro machine
    machv Laf25_g-a	as bck-macro machine with pure additive config-TRs
    iam	Laf25_g-m
    mtype	0
    mmtyp	1
    r	1
    H	1
    mac	0
    E	2
    sympr	
    HM	1
    date	Tue Jul  6 22:12:03 CEST 2010
    edate	Tue Jul  6 22:12:04 CEST 2010
    bnspeed	1

Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:12:03 CEST 2010
Ready: Tue Jul 6 22:12:04 CEST 2010