2-state 5-symbol TM #g (G. Lafitte & C. Papazian)

Comment: This TM produces 1,137,477 nonzeros in 924,180,005,181 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A B1R A3R A1L B1L B3L 1 right B 3 right A 1 left A 1 left B 3 left B
B A2L B4L A3R B2R Z1R 2 left A 4 left B 3 right A 2 right B 1 right Z
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as bck-macro machine.
The same TM as bck-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     0  1 <A 2
     3     1  3 A> 2
     4     0  3 <A 1
     5    -1  <B 1 1
     6    -2  <A 2 1 1
     7    -1  1 B> 2 1 1
     8     0  1 3 A> 1 1
+   10     2  1 33 A>
    11     3  1 33 1 B>
    12     2  1 33 1 <A 2
    13     3  1 34 A> 2
    14     2  1 34 <A 1
    15     1  1 33 <B 1 1
    16     2  1 3 3 2 B> 1 1
    17     1  1 3 3 2 <B 4 1
    18     2  1 33 A> 4 1
    19     1  1 33 <B 3 1
    20     2  1 3 3 2 B> 3 1
    21     3  1 3 3 2 2 B> 1
    22     2  1 3 3 2 2 <B 4
    23     3  1 3 3 2 3 A> 4
    24     2  1 3 3 2 3 <B 3
    25     3  1 3 3 2 2 B> 3
    26     4  1 3 3 23 B>
    27     3  1 3 3 23 <A 2
+   30     0  1 3 3 <A 13 2
    31    -1  1 3 <B 14 2
    32     0  1 2 B> 14 2
    33    -1  1 2 <B 4 13 2
    34     0  1 3 A> 4 13 2
    35    -1  1 3 <B 3 13 2
    36     0  1 2 B> 3 13 2
    37     1  1 2 2 B> 13 2
    38     0  1 2 2 <B 4 1 1 2
    39     1  1 2 3 A> 4 1 1 2
    40     0  1 2 3 <B 3 1 1 2
    41     1  1 2 2 B> 3 1 1 2
    42     2  1 23 B> 1 1 2
    43     1  1 23 <B 4 1 2
    44     2  1 2 2 3 A> 4 1 2
    45     1  1 2 2 3 <B 3 1 2
    46     2  1 23 B> 3 1 2
    47     3  1 24 B> 1 2
    48     2  1 24 <B 4 2
    49     3  1 23 3 A> 4 2
    50     2  1 23 3 <B 3 2
    51     3  1 24 B> 3 2
    52     4  1 25 B> 2
    53     5  1 25 3 A>
    54     6  1 25 3 1 B>
    55     5  1 25 3 1 <A 2
    56     6  1 25 3 3 A> 2
    57     5  1 25 3 3 <A 1
    58     4  1 25 3 <B 1 1
    59     5  1 26 B> 1 1
    60     4  1 26 <B 4 1
    61     5  1 25 3 A> 4 1
    62     4  1 25 3 <B 3 1
    63     5  1 26 B> 3 1
    64     6  1 27 B> 1
    65     5  1 27 <B 4
    66     6  1 26 3 A> 4
    67     5  1 26 3 <B 3
    68     6  1 27 B> 3
    69     7  1 28 B>
    70     6  1 28 <A 2
+   78    -2  1 <A 18 2
    79    -1  3 A> 18 2
+   87     7  39 A> 2
    88     6  39 <A 1
    89     5  38 <B 1 1
    90     6  37 2 B> 1 1
    91     5  37 2 <B 4 1
    92     6  38 A> 4 1
    93     5  38 <B 3 1
    94     6  37 2 B> 3 1
    95     7  37 2 2 B> 1
    96     6  37 2 2 <B 4
    97     7  37 2 3 A> 4
    98     6  37 2 3 <B 3
    99     7  37 2 2 B> 3
   100     8  37 23 B>
   101     7  37 23 <A 2
+  104     4  37 <A 13 2
   105     3  36 <B 14 2
   106     4  35 2 B> 14 2
   107     3  35 2 <B 4 13 2
   108     4  36 A> 4 13 2
   109     3  36 <B 3 13 2
   110     4  35 2 B> 3 13 2
   111     5  35 2 2 B> 13 2
   112     4  35 2 2 <B 4 1 1 2
   113     5  35 2 3 A> 4 1 1 2
   114     4  35 2 3 <B 3 1 1 2
   115     5  35 2 2 B> 3 1 1 2
   116     6  35 23 B> 1 1 2
   117     5  35 23 <B 4 1 2
   118     6  35 2 2 3 A> 4 1 2
   119     5  35 2 2 3 <B 3 1 2
   120     6  35 23 B> 3 1 2
   121     7  35 24 B> 1 2
   122     6  35 24 <B 4 2
   123     7  35 23 3 A> 4 2
   124     6  35 23 3 <B 3 2
   125     7  35 24 B> 3 2
   126     8  35 25 B> 2
   127     9  35 25 3 A>
   128    10  35 25 3 1 B>
   129     9  35 25 3 1 <A 2
   130    10  35 25 3 3 A> 2
   131     9  35 25 3 3 <A 1
   132     8  35 25 3 <B 1 1
   133     9  35 26 B> 1 1
   134     8  35 26 <B 4 1
   135     9  35 25 3 A> 4 1
   136     8  35 25 3 <B 3 1
   137     9  35 26 B> 3 1
   138    10  35 27 B> 1
   139     9  35 27 <B 4
   140    10  35 26 3 A> 4
   141     9  35 26 3 <B 3
   142    10  35 27 B> 3
   143    11  35 28 B>
   144    10  35 28 <A 2
+  152     2  35 <A 18 2
   153     1  34 <B 19 2
   154     2  33 2 B> 19 2
   155     1  33 2 <B 4 18 2
   156     2  34 A> 4 18 2
   157     1  34 <B 3 18 2
   158     2  33 2 B> 3 18 2
   159     3  33 2 2 B> 18 2
   160     2  33 2 2 <B 4 17 2
   161     3  33 2 3 A> 4 17 2
   162     2  33 2 3 <B 3 17 2
   163     3  33 2 2 B> 3 17 2
   164     4  33 23 B> 17 2
   165     3  33 23 <B 4 16 2
   166     4  33 2 2 3 A> 4 16 2
   167     3  33 2 2 3 <B 3 16 2
   168     4  33 23 B> 3 16 2
   169     5  33 24 B> 16 2
   170     4  33 24 <B 4 15 2
   171     5  33 23 3 A> 4 15 2
   172     4  33 23 3 <B 3 15 2
   173     5  33 24 B> 3 15 2
   174     6  33 25 B> 15 2
   175     5  33 25 <B 4 14 2
   176     6  33 24 3 A> 4 14 2
   177     5  33 24 3 <B 3 14 2
   178     6  33 25 B> 3 14 2
   179     7  33 26 B> 14 2
   180     6  33 26 <B 4 13 2
   181     7  33 25 3 A> 4 13 2
   182     6  33 25 3 <B 3 13 2
   183     7  33 26 B> 3 13 2
   184     8  33 27 B> 13 2
   185     7  33 27 <B 4 1 1 2
   186     8  33 26 3 A> 4 1 1 2
   187     7  33 26 3 <B 3 1 1 2
   188     8  33 27 B> 3 1 1 2
   189     9  33 28 B> 1 1 2
   190     8  33 28 <B 4 1 2
   191     9  33 27 3 A> 4 1 2
   192     8  33 27 3 <B 3 1 2
   193     9  33 28 B> 3 1 2
   194    10  33 29 B> 1 2
   195     9  33 29 <B 4 2
   196    10  33 28 3 A> 4 2
   197     9  33 28 3 <B 3 2
   198    10  33 29 B> 3 2
   199    11  33 210 B> 2
   200    12  33 210 3 A>
   201    13  33 210 3 1 B>
   202    12  33 210 3 1 <A 2
   203    13  33 210 3 3 A> 2
   204    12  33 210 3 3 <A 1
   205    11  33 210 3 <B 1 1
   206    12  33 211 B> 1 1
   207    11  33 211 <B 4 1
   208    12  33 210 3 A> 4 1
   209    11  33 210 3 <B 3 1
   210    12  33 211 B> 3 1
   211    13  33 212 B> 1
   212    12  33 212 <B 4
   213    13  33 211 3 A> 4
   214    12  33 211 3 <B 3
   215    13  33 212 B> 3
   216    14  33 213 B>
   217    13  33 213 <A 2
+  230     0  33 <A 113 2
   231    -1  3 3 <B 114 2
   232     0  3 2 B> 114 2
   233    -1  3 2 <B 4 113 2
   234     0  3 3 A> 4 113 2
   235    -1  3 3 <B 3 113 2
   236     0  3 2 B> 3 113 2
   237     1  3 2 2 B> 113 2
   238     0  3 2 2 <B 4 112 2

After 238 steps (201 lines): state = B.
Produced     17 nonzeros.
Tape index 0, scanned [-2 .. 14].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 101 6 16 41 10 28 0 2 3 4 18
B 137 11 29 32 65   1 16 7 15  
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as bck-macro machine.
The same TM as bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:12:03 CEST 2010