Comment: This TM produces 1,137,477 nonzeros in 924,180,005,181 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | B1R | A3R | A1L | B1L | B3L | 1 | right | B | 3 | right | A | 1 | left | A | 1 | left | B | 3 | left | B |
| B | A2L | B4L | A3R | B2R | Z1R | 2 | left | A | 4 | left | B | 3 | right | A | 2 | right | B | 1 | right | Z |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as bck-macro machine.
The same TM as bck-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <A 2
3 1 3 A> 2
4 0 3 <A 1
5 -1 <B 1 1
6 -2 <A 2 1 1
7 -1 1 B> 2 1 1
8 0 1 3 A> 1 1
+ 10 2 1 33 A>
11 3 1 33 1 B>
12 2 1 33 1 <A 2
13 3 1 34 A> 2
14 2 1 34 <A 1
15 1 1 33 <B 1 1
16 2 1 3 3 2 B> 1 1
17 1 1 3 3 2 <B 4 1
18 2 1 33 A> 4 1
19 1 1 33 <B 3 1
20 2 1 3 3 2 B> 3 1
21 3 1 3 3 2 2 B> 1
22 2 1 3 3 2 2 <B 4
23 3 1 3 3 2 3 A> 4
24 2 1 3 3 2 3 <B 3
25 3 1 3 3 2 2 B> 3
26 4 1 3 3 23 B>
27 3 1 3 3 23 <A 2
+ 30 0 1 3 3 <A 13 2
31 -1 1 3 <B 14 2
32 0 1 2 B> 14 2
33 -1 1 2 <B 4 13 2
34 0 1 3 A> 4 13 2
35 -1 1 3 <B 3 13 2
36 0 1 2 B> 3 13 2
37 1 1 2 2 B> 13 2
38 0 1 2 2 <B 4 1 1 2
39 1 1 2 3 A> 4 1 1 2
40 0 1 2 3 <B 3 1 1 2
41 1 1 2 2 B> 3 1 1 2
42 2 1 23 B> 1 1 2
43 1 1 23 <B 4 1 2
44 2 1 2 2 3 A> 4 1 2
45 1 1 2 2 3 <B 3 1 2
46 2 1 23 B> 3 1 2
47 3 1 24 B> 1 2
48 2 1 24 <B 4 2
49 3 1 23 3 A> 4 2
50 2 1 23 3 <B 3 2
51 3 1 24 B> 3 2
52 4 1 25 B> 2
53 5 1 25 3 A>
54 6 1 25 3 1 B>
55 5 1 25 3 1 <A 2
56 6 1 25 3 3 A> 2
57 5 1 25 3 3 <A 1
58 4 1 25 3 <B 1 1
59 5 1 26 B> 1 1
60 4 1 26 <B 4 1
61 5 1 25 3 A> 4 1
62 4 1 25 3 <B 3 1
63 5 1 26 B> 3 1
64 6 1 27 B> 1
65 5 1 27 <B 4
66 6 1 26 3 A> 4
67 5 1 26 3 <B 3
68 6 1 27 B> 3
69 7 1 28 B>
70 6 1 28 <A 2
+ 78 -2 1 <A 18 2
79 -1 3 A> 18 2
+ 87 7 39 A> 2
88 6 39 <A 1
89 5 38 <B 1 1
90 6 37 2 B> 1 1
91 5 37 2 <B 4 1
92 6 38 A> 4 1
93 5 38 <B 3 1
94 6 37 2 B> 3 1
95 7 37 2 2 B> 1
96 6 37 2 2 <B 4
97 7 37 2 3 A> 4
98 6 37 2 3 <B 3
99 7 37 2 2 B> 3
100 8 37 23 B>
101 7 37 23 <A 2
+ 104 4 37 <A 13 2
105 3 36 <B 14 2
106 4 35 2 B> 14 2
107 3 35 2 <B 4 13 2
108 4 36 A> 4 13 2
109 3 36 <B 3 13 2
110 4 35 2 B> 3 13 2
111 5 35 2 2 B> 13 2
112 4 35 2 2 <B 4 1 1 2
113 5 35 2 3 A> 4 1 1 2
114 4 35 2 3 <B 3 1 1 2
115 5 35 2 2 B> 3 1 1 2
116 6 35 23 B> 1 1 2
117 5 35 23 <B 4 1 2
118 6 35 2 2 3 A> 4 1 2
119 5 35 2 2 3 <B 3 1 2
120 6 35 23 B> 3 1 2
121 7 35 24 B> 1 2
122 6 35 24 <B 4 2
123 7 35 23 3 A> 4 2
124 6 35 23 3 <B 3 2
125 7 35 24 B> 3 2
126 8 35 25 B> 2
127 9 35 25 3 A>
128 10 35 25 3 1 B>
129 9 35 25 3 1 <A 2
130 10 35 25 3 3 A> 2
131 9 35 25 3 3 <A 1
132 8 35 25 3 <B 1 1
133 9 35 26 B> 1 1
134 8 35 26 <B 4 1
135 9 35 25 3 A> 4 1
136 8 35 25 3 <B 3 1
137 9 35 26 B> 3 1
138 10 35 27 B> 1
139 9 35 27 <B 4
140 10 35 26 3 A> 4
141 9 35 26 3 <B 3
142 10 35 27 B> 3
143 11 35 28 B>
144 10 35 28 <A 2
+ 152 2 35 <A 18 2
153 1 34 <B 19 2
154 2 33 2 B> 19 2
155 1 33 2 <B 4 18 2
156 2 34 A> 4 18 2
157 1 34 <B 3 18 2
158 2 33 2 B> 3 18 2
159 3 33 2 2 B> 18 2
160 2 33 2 2 <B 4 17 2
161 3 33 2 3 A> 4 17 2
162 2 33 2 3 <B 3 17 2
163 3 33 2 2 B> 3 17 2
164 4 33 23 B> 17 2
165 3 33 23 <B 4 16 2
166 4 33 2 2 3 A> 4 16 2
167 3 33 2 2 3 <B 3 16 2
168 4 33 23 B> 3 16 2
169 5 33 24 B> 16 2
170 4 33 24 <B 4 15 2
171 5 33 23 3 A> 4 15 2
172 4 33 23 3 <B 3 15 2
173 5 33 24 B> 3 15 2
174 6 33 25 B> 15 2
175 5 33 25 <B 4 14 2
176 6 33 24 3 A> 4 14 2
177 5 33 24 3 <B 3 14 2
178 6 33 25 B> 3 14 2
179 7 33 26 B> 14 2
180 6 33 26 <B 4 13 2
181 7 33 25 3 A> 4 13 2
182 6 33 25 3 <B 3 13 2
183 7 33 26 B> 3 13 2
184 8 33 27 B> 13 2
185 7 33 27 <B 4 1 1 2
186 8 33 26 3 A> 4 1 1 2
187 7 33 26 3 <B 3 1 1 2
188 8 33 27 B> 3 1 1 2
189 9 33 28 B> 1 1 2
190 8 33 28 <B 4 1 2
191 9 33 27 3 A> 4 1 2
192 8 33 27 3 <B 3 1 2
193 9 33 28 B> 3 1 2
194 10 33 29 B> 1 2
195 9 33 29 <B 4 2
196 10 33 28 3 A> 4 2
197 9 33 28 3 <B 3 2
198 10 33 29 B> 3 2
199 11 33 210 B> 2
200 12 33 210 3 A>
201 13 33 210 3 1 B>
202 12 33 210 3 1 <A 2
203 13 33 210 3 3 A> 2
204 12 33 210 3 3 <A 1
205 11 33 210 3 <B 1 1
206 12 33 211 B> 1 1
207 11 33 211 <B 4 1
208 12 33 210 3 A> 4 1
209 11 33 210 3 <B 3 1
210 12 33 211 B> 3 1
211 13 33 212 B> 1
212 12 33 212 <B 4
213 13 33 211 3 A> 4
214 12 33 211 3 <B 3
215 13 33 212 B> 3
216 14 33 213 B>
217 13 33 213 <A 2
+ 230 0 33 <A 113 2
231 -1 3 3 <B 114 2
232 0 3 2 B> 114 2
233 -1 3 2 <B 4 113 2
234 0 3 3 A> 4 113 2
235 -1 3 3 <B 3 113 2
236 0 3 2 B> 3 113 2
237 1 3 2 2 B> 113 2
238 0 3 2 2 <B 4 112 2
After 238 steps (201 lines): state = B.
Produced 17 nonzeros.
Tape index 0, scanned [-2 .. 14].
| State | Count | Execution count | First in step | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
| A | 101 | 6 | 16 | 41 | 10 | 28 | 0 | 2 | 3 | 4 | 18 |
| B | 137 | 11 | 29 | 32 | 65 | 1 | 16 | 7 | 15 | ||