Comment: This TM produces 1,137,477 nonzeros in 924,180,005,181 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | B1R | A3R | A1L | B1L | B3L | 1 | right | B | 3 | right | A | 1 | left | A | 1 | left | B | 3 | left | B |
B | A2L | B4L | A3R | B2R | Z1R | 2 | left | A | 4 | left | B | 3 | right | A | 2 | right | B | 1 | right | Z |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as bck-macro machine. The same TM as bck-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <A 2 3 1 3 A> 2 4 0 3 <A 1 5 -1 <B 1 1 6 -2 <A 2 1 1 7 -1 1 B> 2 1 1 8 0 1 3 A> 1 1 + 10 2 1 33 A> 11 3 1 33 1 B> 12 2 1 33 1 <A 2 13 3 1 34 A> 2 14 2 1 34 <A 1 15 1 1 33 <B 1 1 16 2 1 3 3 2 B> 1 1 17 1 1 3 3 2 <B 4 1 18 2 1 33 A> 4 1 19 1 1 33 <B 3 1 20 2 1 3 3 2 B> 3 1 21 3 1 3 3 2 2 B> 1 22 2 1 3 3 2 2 <B 4 23 3 1 3 3 2 3 A> 4 24 2 1 3 3 2 3 <B 3 25 3 1 3 3 2 2 B> 3 26 4 1 3 3 23 B> 27 3 1 3 3 23 <A 2 + 30 0 1 3 3 <A 13 2 31 -1 1 3 <B 14 2 32 0 1 2 B> 14 2 33 -1 1 2 <B 4 13 2 34 0 1 3 A> 4 13 2 35 -1 1 3 <B 3 13 2 36 0 1 2 B> 3 13 2 37 1 1 2 2 B> 13 2 38 0 1 2 2 <B 4 1 1 2 39 1 1 2 3 A> 4 1 1 2 40 0 1 2 3 <B 3 1 1 2 41 1 1 2 2 B> 3 1 1 2 42 2 1 23 B> 1 1 2 43 1 1 23 <B 4 1 2 44 2 1 2 2 3 A> 4 1 2 45 1 1 2 2 3 <B 3 1 2 46 2 1 23 B> 3 1 2 47 3 1 24 B> 1 2 48 2 1 24 <B 4 2 49 3 1 23 3 A> 4 2 50 2 1 23 3 <B 3 2 51 3 1 24 B> 3 2 52 4 1 25 B> 2 53 5 1 25 3 A> 54 6 1 25 3 1 B> 55 5 1 25 3 1 <A 2 56 6 1 25 3 3 A> 2 57 5 1 25 3 3 <A 1 58 4 1 25 3 <B 1 1 59 5 1 26 B> 1 1 60 4 1 26 <B 4 1 61 5 1 25 3 A> 4 1 62 4 1 25 3 <B 3 1 63 5 1 26 B> 3 1 64 6 1 27 B> 1 65 5 1 27 <B 4 66 6 1 26 3 A> 4 67 5 1 26 3 <B 3 68 6 1 27 B> 3 69 7 1 28 B> 70 6 1 28 <A 2 + 78 -2 1 <A 18 2 79 -1 3 A> 18 2 + 87 7 39 A> 2 88 6 39 <A 1 89 5 38 <B 1 1 90 6 37 2 B> 1 1 91 5 37 2 <B 4 1 92 6 38 A> 4 1 93 5 38 <B 3 1 94 6 37 2 B> 3 1 95 7 37 2 2 B> 1 96 6 37 2 2 <B 4 97 7 37 2 3 A> 4 98 6 37 2 3 <B 3 99 7 37 2 2 B> 3 100 8 37 23 B> 101 7 37 23 <A 2 + 104 4 37 <A 13 2 105 3 36 <B 14 2 106 4 35 2 B> 14 2 107 3 35 2 <B 4 13 2 108 4 36 A> 4 13 2 109 3 36 <B 3 13 2 110 4 35 2 B> 3 13 2 111 5 35 2 2 B> 13 2 112 4 35 2 2 <B 4 1 1 2 113 5 35 2 3 A> 4 1 1 2 114 4 35 2 3 <B 3 1 1 2 115 5 35 2 2 B> 3 1 1 2 116 6 35 23 B> 1 1 2 117 5 35 23 <B 4 1 2 118 6 35 2 2 3 A> 4 1 2 119 5 35 2 2 3 <B 3 1 2 120 6 35 23 B> 3 1 2 121 7 35 24 B> 1 2 122 6 35 24 <B 4 2 123 7 35 23 3 A> 4 2 124 6 35 23 3 <B 3 2 125 7 35 24 B> 3 2 126 8 35 25 B> 2 127 9 35 25 3 A> 128 10 35 25 3 1 B> 129 9 35 25 3 1 <A 2 130 10 35 25 3 3 A> 2 131 9 35 25 3 3 <A 1 132 8 35 25 3 <B 1 1 133 9 35 26 B> 1 1 134 8 35 26 <B 4 1 135 9 35 25 3 A> 4 1 136 8 35 25 3 <B 3 1 137 9 35 26 B> 3 1 138 10 35 27 B> 1 139 9 35 27 <B 4 140 10 35 26 3 A> 4 141 9 35 26 3 <B 3 142 10 35 27 B> 3 143 11 35 28 B> 144 10 35 28 <A 2 + 152 2 35 <A 18 2 153 1 34 <B 19 2 154 2 33 2 B> 19 2 155 1 33 2 <B 4 18 2 156 2 34 A> 4 18 2 157 1 34 <B 3 18 2 158 2 33 2 B> 3 18 2 159 3 33 2 2 B> 18 2 160 2 33 2 2 <B 4 17 2 161 3 33 2 3 A> 4 17 2 162 2 33 2 3 <B 3 17 2 163 3 33 2 2 B> 3 17 2 164 4 33 23 B> 17 2 165 3 33 23 <B 4 16 2 166 4 33 2 2 3 A> 4 16 2 167 3 33 2 2 3 <B 3 16 2 168 4 33 23 B> 3 16 2 169 5 33 24 B> 16 2 170 4 33 24 <B 4 15 2 171 5 33 23 3 A> 4 15 2 172 4 33 23 3 <B 3 15 2 173 5 33 24 B> 3 15 2 174 6 33 25 B> 15 2 175 5 33 25 <B 4 14 2 176 6 33 24 3 A> 4 14 2 177 5 33 24 3 <B 3 14 2 178 6 33 25 B> 3 14 2 179 7 33 26 B> 14 2 180 6 33 26 <B 4 13 2 181 7 33 25 3 A> 4 13 2 182 6 33 25 3 <B 3 13 2 183 7 33 26 B> 3 13 2 184 8 33 27 B> 13 2 185 7 33 27 <B 4 1 1 2 186 8 33 26 3 A> 4 1 1 2 187 7 33 26 3 <B 3 1 1 2 188 8 33 27 B> 3 1 1 2 189 9 33 28 B> 1 1 2 190 8 33 28 <B 4 1 2 191 9 33 27 3 A> 4 1 2 192 8 33 27 3 <B 3 1 2 193 9 33 28 B> 3 1 2 194 10 33 29 B> 1 2 195 9 33 29 <B 4 2 196 10 33 28 3 A> 4 2 197 9 33 28 3 <B 3 2 198 10 33 29 B> 3 2 199 11 33 210 B> 2 200 12 33 210 3 A> 201 13 33 210 3 1 B> 202 12 33 210 3 1 <A 2 203 13 33 210 3 3 A> 2 204 12 33 210 3 3 <A 1 205 11 33 210 3 <B 1 1 206 12 33 211 B> 1 1 207 11 33 211 <B 4 1 208 12 33 210 3 A> 4 1 209 11 33 210 3 <B 3 1 210 12 33 211 B> 3 1 211 13 33 212 B> 1 212 12 33 212 <B 4 213 13 33 211 3 A> 4 214 12 33 211 3 <B 3 215 13 33 212 B> 3 216 14 33 213 B> 217 13 33 213 <A 2 + 230 0 33 <A 113 2 231 -1 3 3 <B 114 2 232 0 3 2 B> 114 2 233 -1 3 2 <B 4 113 2 234 0 3 3 A> 4 113 2 235 -1 3 3 <B 3 113 2 236 0 3 2 B> 3 113 2 237 1 3 2 2 B> 113 2 238 0 3 2 2 <B 4 112 2 After 238 steps (201 lines): state = B. Produced 17 nonzeros. Tape index 0, scanned [-2 .. 14].
State | Count | Execution count | First in step | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
A | 101 | 6 | 16 | 41 | 10 | 28 | 0 | 2 | 3 | 4 | 18 |
B | 137 | 11 | 29 | 32 | 65 | 1 | 16 | 7 | 15 |