3-state 3-symbol champion #18886871 of Allen Brady

Comment: A.B.: 2 1 1 1 1 2 1-1 1 3-1 2 3 1 0 2 1 1 0 0 0 1-1 2 2 1 1
Comment: The halting transition has been modified to print a 1
Comment: This TM produces 5600 nonzeros in 29403894 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on 0 on 1 on 2
Print Move Goto Print Move Goto Print Move Goto
A B1R A2R A1L 1 right B 2 right A 1 left A
B C2L C0R B1R 2 left C 0 right C 1 right B
C Z1R A2L B1R 1 right Z 2 left A 1 right B
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . . 0
     1    1 B . . . 10
     2    0 C . . . 12
     3   -1 A . . .022
     4    0 B . . .122
     5    1 B . . .112
     6    2 B . . .1110
     7    1 C . . .1112
     8    0 A . . .1122
     9    1 A . . .1222
    10    0 A . . .1212
    11   -1 A . . .1112
    12    0 A . . .2112
    13    1 A . . .2212
    14    2 A . . .2222
    15    1 A . . .2221
    16    0 A . . .2211
    17   -1 A . . .2111
    18   -2 A . . 01111
    19   -1 B . . 11111
    20    0 C . . 10111
    21   -1 A . . 10211
    22    0 B . . 11211
    23    1 B . . 11111
    24    2 C . . 11101
    25    1 A . . 11102
    26    2 B . . 11112
    27    3 B . . 111110
    28    2 C . . 111112
    29    1 A . . 111122
    30    2 A . . 111222
    31    1 A . . 111212
    32    0 A . . 111112
    33    1 A . . 112112
    34    2 A . . 112212
    35    3 A . . 112222
    36    2 A . . 112221
    37    1 A . . 112211
    38    0 A . . 112111
    39   -1 A . . 111111
    40    0 A . . 121111
    41    1 A . . 122111
    42    2 A . . 122211
    43    3 A . . 122221
    44    4 A . . 1222220
    45    5 B . . 12222210
    46    4 C . . 12222212
    47    3 A . . 12222222
    48    2 A . . 12222122
    49    1 A . . 12221122
    50    0 A . . 12211122
    51   -1 A . . 12111122
    52   -2 A . . 11111122
    53   -1 A . . 21111122
    54    0 A . . 22111122
    55    1 A . . 22211122
    56    2 A . . 22221122
    57    3 A . . 22222122
    58    4 A . . 22222222
    59    3 A . . 22222212
    60    2 A . . 22222112
    61    1 A . . 22221112
    62    0 A . . 22211112
    63   -1 A . . 22111112
    64   -2 A . . 21111112
    65   -3 A . .011111112
    66   -2 B . .111111112
    67   -1 C . .101111112
    68   -2 A . .102111112
    69   -1 B . .112111112
    70    0 B . .111111112
    71    1 C . .111011112
    72    0 A . .111021112
    73    1 B . .111121112
    74    2 B . .111111112
    75    3 C . .111110112
    76    2 A . .111110212
    77    3 B . .111111212
    78    4 B . .111111112
    79    5 C . .111111102
    80    6 B . .1111111010
    81    5 C . .1111111012
    82    4 A . .1111111022
    83    5 B . .1111111122
    84    6 B . .1111111112
    85    7 B . .11111111110
    86    6 C . .11111111112
    87    5 A . .11111111122
    88    6 A . .11111111222
    89    5 A . .11111111212
    90    4 A . .11111111112
    91    5 A . .11111112112
    92    6 A . .11111112212
    93    7 A . .11111112222
    94    6 A . .11111112221
    95    5 A . .11111112211
    96    4 A . .11111112111
    97    3 A . .11111111111
    98    4 A . .11111121111
    99    5 A . .11111122111
   100    6 A . .11111122211
   101    7 A . .11111122221
   102    8 A . .111111222220
   103    9 B . .1111112222210
   104    8 C . .1111112222212
   105    7 A . .1111112222222
   106    6 A . .1111112222122
   107    5 A . .1111112221122
   108    4 A . .1111112211122
   109    3 A . .1111112111122
   110    2 A . .1111111111122
   111    3 A . .1111121111122
   112    4 A . .1111122111122
   113    5 A . .1111122211122
   114    6 A . .1111122221122
   115    7 A . .1111122222122
   116    8 A . .1111122222222
   117    7 A . .1111122222212
   118    6 A . .1111122222112
   119    5 A . .1111122221112
   120    4 A . .1111122211112
   121    3 A . .1111122111112
   122    2 A . .1111121111112
   123    1 A . .1111111111112
   124    2 A . .1111211111112
   125    3 A . .1111221111112
   126    4 A . .1111222111112
   127    5 A . .1111222211112
   128    6 A . .1111222221112
   129    7 A . .1111222222112
   130    8 A . .1111222222212
   131    9 A . .1111222222222
   132    8 A . .1111222222221
   133    7 A . .1111222222211
   134    6 A . .1111222222111
   135    5 A . .1111222221111
   136    4 A . .1111222211111
   137    3 A . .1111222111111
   138    2 A . .1111221111111
   139    1 A . .1111211111111
   140    0 A . .1111111111111
   141    1 A . .1112111111111
   142    2 A . .1112211111111
   143    3 A . .1112221111111
   144    4 A . .1112222111111
   145    5 A . .1112222211111
   146    6 A . .1112222221111
   147    7 A . .1112222222111
   148    8 A . .1112222222211
   149    9 A . .1112222222221
   150   10 A . .11122222222220
   151   11 B . .111222222222210
   152   10 C . .111222222222212
   153    9 A . .111222222222222
   154    8 A . .111222222222122
   155    7 A . .111222222221122
   156    6 A . .111222222211122
   157    5 A . .111222222111122
   158    4 A . .111222221111122
   159    3 A . .111222211111122
   160    2 A . .111222111111122
   161    1 A . .111221111111122
   162    0 A . .111211111111122
   163   -1 A . .111111111111122
   164    0 A . .112111111111122
   165    1 A . .112211111111122
   166    2 A . .112221111111122
   167    3 A . .112222111111122
   168    4 A . .112222211111122
   169    5 A . .112222221111122
   170    6 A . .112222222111122
   171    7 A . .112222222211122
   172    8 A . .112222222221122
   173    9 A . .112222222222122
   174   10 A . .112222222222222
   175    9 A . .112222222222212
   176    8 A . .112222222222112
   177    7 A . .112222222221112
   178    6 A . .112222222211112
   179    5 A . .112222222111112
   180    4 A . .112222221111112
   181    3 A . .112222211111112
   182    2 A . .112222111111112
   183    1 A . .112221111111112
   184    0 A . .112211111111112
   185   -1 A . .112111111111112
   186   -2 A . .111111111111112
   187   -1 A . .121111111111112
   188    0 A . .122111111111112
   189    1 A . .122211111111112
   190    2 A . .122221111111112
   191    3 A . .122222111111112
   192    4 A . .122222211111112
   193    5 A . .122222221111112
   194    6 A . .122222222111112
   195    7 A . .122222222211112
   196    8 A . .122222222221112
   197    9 A . .122222222222112
   198   10 A . .122222222222212
   199   11 A . .122222222222222
   200   10 A . .122222222222221

After 200 steps (201 lines): state = A.
Produced     15 nonzeros.
Tape index 10, scanned [-3 .. 11].
State Count Execution count First in step
on 0 on 1 on 2 on 0 on 1 on 2
A 163 13 76 74 0 8 9
B 23 8 6 9 1 19 4
C 14   13 1   2 79
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:11:36 CEST 2010