Comment: A.B.: 2 1 1 1 1 2 1-1 1 3-1 2 3 1 0 2 1 1 0 0 0 1-1 2 2 1 1 Comment: The halting transition has been modified to print a 1 Comment: This TM produces 5600 nonzeros in 29403894 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | |||||||
A | B1R | A2R | A1L | 1 | right | B | 2 | right | A | 1 | left | A |
B | C2L | C0R | B1R | 2 | left | C | 0 | right | C | 1 | right | B |
C | Z1R | A2L | B1R | 1 | right | Z | 2 | left | A | 1 | right | B |
Simulation is done just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. The same TM as 2-bck-macro machine. The same TM as 2-bck-macro machine with pure additive config-TRs. Step Tpos St Tape contents 0 0 A . . . 0 1 1 B . . . 10 2 0 C . . . 12 3 -1 A . . .022 4 0 B . . .122 5 1 B . . .112 6 2 B . . .1110 7 1 C . . .1112 8 0 A . . .1122 9 1 A . . .1222 10 0 A . . .1212 11 -1 A . . .1112 12 0 A . . .2112 13 1 A . . .2212 14 2 A . . .2222 15 1 A . . .2221 16 0 A . . .2211 17 -1 A . . .2111 18 -2 A . . 01111 19 -1 B . . 11111 20 0 C . . 10111 21 -1 A . . 10211 22 0 B . . 11211 23 1 B . . 11111 24 2 C . . 11101 25 1 A . . 11102 26 2 B . . 11112 27 3 B . . 111110 28 2 C . . 111112 29 1 A . . 111122 30 2 A . . 111222 31 1 A . . 111212 32 0 A . . 111112 33 1 A . . 112112 34 2 A . . 112212 35 3 A . . 112222 36 2 A . . 112221 37 1 A . . 112211 38 0 A . . 112111 39 -1 A . . 111111 40 0 A . . 121111 41 1 A . . 122111 42 2 A . . 122211 43 3 A . . 122221 44 4 A . . 1222220 45 5 B . . 12222210 46 4 C . . 12222212 47 3 A . . 12222222 48 2 A . . 12222122 49 1 A . . 12221122 50 0 A . . 12211122 51 -1 A . . 12111122 52 -2 A . . 11111122 53 -1 A . . 21111122 54 0 A . . 22111122 55 1 A . . 22211122 56 2 A . . 22221122 57 3 A . . 22222122 58 4 A . . 22222222 59 3 A . . 22222212 60 2 A . . 22222112 61 1 A . . 22221112 62 0 A . . 22211112 63 -1 A . . 22111112 64 -2 A . . 21111112 65 -3 A . .011111112 66 -2 B . .111111112 67 -1 C . .101111112 68 -2 A . .102111112 69 -1 B . .112111112 70 0 B . .111111112 71 1 C . .111011112 72 0 A . .111021112 73 1 B . .111121112 74 2 B . .111111112 75 3 C . .111110112 76 2 A . .111110212 77 3 B . .111111212 78 4 B . .111111112 79 5 C . .111111102 80 6 B . .1111111010 81 5 C . .1111111012 82 4 A . .1111111022 83 5 B . .1111111122 84 6 B . .1111111112 85 7 B . .11111111110 86 6 C . .11111111112 87 5 A . .11111111122 88 6 A . .11111111222 89 5 A . .11111111212 90 4 A . .11111111112 91 5 A . .11111112112 92 6 A . .11111112212 93 7 A . .11111112222 94 6 A . .11111112221 95 5 A . .11111112211 96 4 A . .11111112111 97 3 A . .11111111111 98 4 A . .11111121111 99 5 A . .11111122111 100 6 A . .11111122211 101 7 A . .11111122221 102 8 A . .111111222220 103 9 B . .1111112222210 104 8 C . .1111112222212 105 7 A . .1111112222222 106 6 A . .1111112222122 107 5 A . .1111112221122 108 4 A . .1111112211122 109 3 A . .1111112111122 110 2 A . .1111111111122 111 3 A . .1111121111122 112 4 A . .1111122111122 113 5 A . .1111122211122 114 6 A . .1111122221122 115 7 A . .1111122222122 116 8 A . .1111122222222 117 7 A . .1111122222212 118 6 A . .1111122222112 119 5 A . .1111122221112 120 4 A . .1111122211112 121 3 A . .1111122111112 122 2 A . .1111121111112 123 1 A . .1111111111112 124 2 A . .1111211111112 125 3 A . .1111221111112 126 4 A . .1111222111112 127 5 A . .1111222211112 128 6 A . .1111222221112 129 7 A . .1111222222112 130 8 A . .1111222222212 131 9 A . .1111222222222 132 8 A . .1111222222221 133 7 A . .1111222222211 134 6 A . .1111222222111 135 5 A . .1111222221111 136 4 A . .1111222211111 137 3 A . .1111222111111 138 2 A . .1111221111111 139 1 A . .1111211111111 140 0 A . .1111111111111 141 1 A . .1112111111111 142 2 A . .1112211111111 143 3 A . .1112221111111 144 4 A . .1112222111111 145 5 A . .1112222211111 146 6 A . .1112222221111 147 7 A . .1112222222111 148 8 A . .1112222222211 149 9 A . .1112222222221 150 10 A . .11122222222220 151 11 B . .111222222222210 152 10 C . .111222222222212 153 9 A . .111222222222222 154 8 A . .111222222222122 155 7 A . .111222222221122 156 6 A . .111222222211122 157 5 A . .111222222111122 158 4 A . .111222221111122 159 3 A . .111222211111122 160 2 A . .111222111111122 161 1 A . .111221111111122 162 0 A . .111211111111122 163 -1 A . .111111111111122 164 0 A . .112111111111122 165 1 A . .112211111111122 166 2 A . .112221111111122 167 3 A . .112222111111122 168 4 A . .112222211111122 169 5 A . .112222221111122 170 6 A . .112222222111122 171 7 A . .112222222211122 172 8 A . .112222222221122 173 9 A . .112222222222122 174 10 A . .112222222222222 175 9 A . .112222222222212 176 8 A . .112222222222112 177 7 A . .112222222221112 178 6 A . .112222222211112 179 5 A . .112222222111112 180 4 A . .112222221111112 181 3 A . .112222211111112 182 2 A . .112222111111112 183 1 A . .112221111111112 184 0 A . .112211111111112 185 -1 A . .112111111111112 186 -2 A . .111111111111112 187 -1 A . .121111111111112 188 0 A . .122111111111112 189 1 A . .122211111111112 190 2 A . .122221111111112 191 3 A . .122222111111112 192 4 A . .122222211111112 193 5 A . .122222221111112 194 6 A . .122222222111112 195 7 A . .122222222211112 196 8 A . .122222222221112 197 9 A . .122222222222112 198 10 A . .122222222222212 199 11 A . .122222222222222 200 10 A . .122222222222221 After 200 steps (201 lines): state = A. Produced 15 nonzeros. Tape index 10, scanned [-3 .. 11].
State | Count | Execution count | First in step | ||||
---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
A | 163 | 13 | 76 | 74 | 0 | 8 | 9 |
B | 23 | 8 | 6 | 9 | 1 | 19 | 4 |
C | 14 | 13 | 1 | 2 | 79 |