Comment: A.B.: 2 1 1 1 1 2 1-1 1 3-1 2 3 1 0 2 1 1 0 0 0 1-1 2 2 1 1 Comment: The halting transition has been modified to print a 1 Comment: This TM produces 5600 nonzeros in 29403894 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | |||||||
| A | B1R | A2R | A1L | 1 | right | B | 2 | right | A | 1 | left | A |
| B | C2L | C0R | B1R | 2 | left | C | 0 | right | C | 1 | right | B |
| C | Z1R | A2L | B1R | 1 | right | Z | 2 | left | A | 1 | right | B |
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.
Step Tpos St Tape contents
0 0 A . . . 0
1 1 B . . . 10
2 0 C . . . 12
3 -1 A . . .022
4 0 B . . .122
5 1 B . . .112
6 2 B . . .1110
7 1 C . . .1112
8 0 A . . .1122
9 1 A . . .1222
10 0 A . . .1212
11 -1 A . . .1112
12 0 A . . .2112
13 1 A . . .2212
14 2 A . . .2222
15 1 A . . .2221
16 0 A . . .2211
17 -1 A . . .2111
18 -2 A . . 01111
19 -1 B . . 11111
20 0 C . . 10111
21 -1 A . . 10211
22 0 B . . 11211
23 1 B . . 11111
24 2 C . . 11101
25 1 A . . 11102
26 2 B . . 11112
27 3 B . . 111110
28 2 C . . 111112
29 1 A . . 111122
30 2 A . . 111222
31 1 A . . 111212
32 0 A . . 111112
33 1 A . . 112112
34 2 A . . 112212
35 3 A . . 112222
36 2 A . . 112221
37 1 A . . 112211
38 0 A . . 112111
39 -1 A . . 111111
40 0 A . . 121111
41 1 A . . 122111
42 2 A . . 122211
43 3 A . . 122221
44 4 A . . 1222220
45 5 B . . 12222210
46 4 C . . 12222212
47 3 A . . 12222222
48 2 A . . 12222122
49 1 A . . 12221122
50 0 A . . 12211122
51 -1 A . . 12111122
52 -2 A . . 11111122
53 -1 A . . 21111122
54 0 A . . 22111122
55 1 A . . 22211122
56 2 A . . 22221122
57 3 A . . 22222122
58 4 A . . 22222222
59 3 A . . 22222212
60 2 A . . 22222112
61 1 A . . 22221112
62 0 A . . 22211112
63 -1 A . . 22111112
64 -2 A . . 21111112
65 -3 A . .011111112
66 -2 B . .111111112
67 -1 C . .101111112
68 -2 A . .102111112
69 -1 B . .112111112
70 0 B . .111111112
71 1 C . .111011112
72 0 A . .111021112
73 1 B . .111121112
74 2 B . .111111112
75 3 C . .111110112
76 2 A . .111110212
77 3 B . .111111212
78 4 B . .111111112
79 5 C . .111111102
80 6 B . .1111111010
81 5 C . .1111111012
82 4 A . .1111111022
83 5 B . .1111111122
84 6 B . .1111111112
85 7 B . .11111111110
86 6 C . .11111111112
87 5 A . .11111111122
88 6 A . .11111111222
89 5 A . .11111111212
90 4 A . .11111111112
91 5 A . .11111112112
92 6 A . .11111112212
93 7 A . .11111112222
94 6 A . .11111112221
95 5 A . .11111112211
96 4 A . .11111112111
97 3 A . .11111111111
98 4 A . .11111121111
99 5 A . .11111122111
100 6 A . .11111122211
101 7 A . .11111122221
102 8 A . .111111222220
103 9 B . .1111112222210
104 8 C . .1111112222212
105 7 A . .1111112222222
106 6 A . .1111112222122
107 5 A . .1111112221122
108 4 A . .1111112211122
109 3 A . .1111112111122
110 2 A . .1111111111122
111 3 A . .1111121111122
112 4 A . .1111122111122
113 5 A . .1111122211122
114 6 A . .1111122221122
115 7 A . .1111122222122
116 8 A . .1111122222222
117 7 A . .1111122222212
118 6 A . .1111122222112
119 5 A . .1111122221112
120 4 A . .1111122211112
121 3 A . .1111122111112
122 2 A . .1111121111112
123 1 A . .1111111111112
124 2 A . .1111211111112
125 3 A . .1111221111112
126 4 A . .1111222111112
127 5 A . .1111222211112
128 6 A . .1111222221112
129 7 A . .1111222222112
130 8 A . .1111222222212
131 9 A . .1111222222222
132 8 A . .1111222222221
133 7 A . .1111222222211
134 6 A . .1111222222111
135 5 A . .1111222221111
136 4 A . .1111222211111
137 3 A . .1111222111111
138 2 A . .1111221111111
139 1 A . .1111211111111
140 0 A . .1111111111111
141 1 A . .1112111111111
142 2 A . .1112211111111
143 3 A . .1112221111111
144 4 A . .1112222111111
145 5 A . .1112222211111
146 6 A . .1112222221111
147 7 A . .1112222222111
148 8 A . .1112222222211
149 9 A . .1112222222221
150 10 A . .11122222222220
151 11 B . .111222222222210
152 10 C . .111222222222212
153 9 A . .111222222222222
154 8 A . .111222222222122
155 7 A . .111222222221122
156 6 A . .111222222211122
157 5 A . .111222222111122
158 4 A . .111222221111122
159 3 A . .111222211111122
160 2 A . .111222111111122
161 1 A . .111221111111122
162 0 A . .111211111111122
163 -1 A . .111111111111122
164 0 A . .112111111111122
165 1 A . .112211111111122
166 2 A . .112221111111122
167 3 A . .112222111111122
168 4 A . .112222211111122
169 5 A . .112222221111122
170 6 A . .112222222111122
171 7 A . .112222222211122
172 8 A . .112222222221122
173 9 A . .112222222222122
174 10 A . .112222222222222
175 9 A . .112222222222212
176 8 A . .112222222222112
177 7 A . .112222222221112
178 6 A . .112222222211112
179 5 A . .112222222111112
180 4 A . .112222221111112
181 3 A . .112222211111112
182 2 A . .112222111111112
183 1 A . .112221111111112
184 0 A . .112211111111112
185 -1 A . .112111111111112
186 -2 A . .111111111111112
187 -1 A . .121111111111112
188 0 A . .122111111111112
189 1 A . .122211111111112
190 2 A . .122221111111112
191 3 A . .122222111111112
192 4 A . .122222211111112
193 5 A . .122222221111112
194 6 A . .122222222111112
195 7 A . .122222222211112
196 8 A . .122222222221112
197 9 A . .122222222222112
198 10 A . .122222222222212
199 11 A . .122222222222222
200 10 A . .122222222222221
After 200 steps (201 lines): state = A.
Produced 15 nonzeros.
Tape index 10, scanned [-3 .. 11].
| State | Count | Execution count | First in step | ||||
|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
| A | 163 | 13 | 76 | 74 | 0 | 8 | 9 |
| B | 23 | 8 | 6 | 9 | 1 | 19 | 4 |
| C | 14 | 13 | 1 | 2 | 79 | ||