Comment: A.B.: 2 1 1 1 1 2 1-1 1 3-1 2 3 1 0 2 1 1 0 0 0 1-1 2 2 1 1 Comment: The halting transition has been modified to print a 1 Comment: This TM produces 5600 nonzeros in 29403894 steps.
| State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | |||||||
| A | B1R | A2R | A1L | 1 | right | B | 2 | right | A | 1 | left | A |
| B | C2L | C0R | B1R | 2 | left | C | 0 | right | C | 1 | right | B |
| C | Z1R | A2L | B1R | 1 | right | Z | 2 | left | A | 1 | right | B |
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.
Pushing initial machine.
Pushing macro factor 2.
Pushing BCK machine.
Steps BasSteps BasTpos Tape contents
0 0 0 (00)A>
1 6 2 01 (11)B>
2 11 -1 01 <A(11) 20
3 14 2 02 (22)A> 20
4 17 -1 02 <A(11) 10
5 24 2 11 (10)C> 10
6 39 -1 11 <A(11) 11
7 42 2 12 (22)A> 11
8 44 4 12 22 (22)A>
9 49 1 12 22 <A(11) 22
10 51 -1 12 <A(11) 11 22
11 56 2 22 (22)A> 11 22
12 58 4 222 (22)A> 22
13 61 1 222 <A(11) 12
14 65 -3 <A(11) 112 12
15 70 0 01 (11)B> 112 12
16 78 4 01 112 (11)B> 12
17 80 6 01 113 (01)B>
18 97 3 01 113 <A(11) 11
19 100 6 01 112 12 (22)A> 11
20 102 8 01 112 12 22 (22)A>
21 107 5 01 112 12 22 <A(11) 22
22 109 3 01 112 12 <A(11) 11 22
23 114 6 01 112 22 (22)A> 11 22
24 116 8 01 112 222 (22)A> 22
25 119 5 01 112 222 <A(11) 12
26 123 1 01 112 <A(11) 112 12
27 126 4 01 11 12 (22)A> 112 12
28 130 8 01 11 12 222 (22)A> 12
29 135 5 01 11 12 222 <A(11) 11
30 139 1 01 11 12 <A(11) 113
31 144 4 01 11 22 (22)A> 113
32 150 10 01 11 224 (22)A>
33 155 7 01 11 224 <A(11) 22
34 163 -1 01 11 <A(11) 114 22
35 166 2 01 12 (22)A> 114 22
36 174 10 01 12 224 (22)A> 22
37 177 7 01 12 224 <A(11) 12
38 185 -1 01 12 <A(11) 114 12
39 190 2 01 22 (22)A> 114 12
40 198 10 01 225 (22)A> 12
41 203 7 01 225 <A(11) 11
42 213 -3 01 <A(11) 116
43 216 0 02 (22)A> 116
44 228 12 02 226 (22)A>
45 233 9 02 226 <A(11) 22
46 245 -3 02 <A(11) 116 22
47 252 0 11 (10)C> 116 22
48 276 12 117 (10)C> 22
49 278 14 117 10 (11)B>
50 283 11 117 10 <A(11) 20
51 288 14 118 (11)B> 20
52 301 11 118 <A(11) 11
53 304 14 117 12 (22)A> 11
54 306 16 117 12 22 (22)A>
55 311 13 117 12 22 <A(11) 22
56 313 11 117 12 <A(11) 11 22
57 318 14 117 22 (22)A> 11 22
58 320 16 117 222 (22)A> 22
59 323 13 117 222 <A(11) 12
60 327 9 117 <A(11) 112 12
61 330 12 116 12 (22)A> 112 12
62 334 16 116 12 222 (22)A> 12
63 339 13 116 12 222 <A(11) 11
64 343 9 116 12 <A(11) 113
65 348 12 116 22 (22)A> 113
66 354 18 116 224 (22)A>
67 359 15 116 224 <A(11) 22
68 367 7 116 <A(11) 114 22
69 370 10 115 12 (22)A> 114 22
70 378 18 115 12 224 (22)A> 22
71 381 15 115 12 224 <A(11) 12
72 389 7 115 12 <A(11) 114 12
73 394 10 115 22 (22)A> 114 12
74 402 18 115 225 (22)A> 12
75 407 15 115 225 <A(11) 11
76 417 5 115 <A(11) 116
77 420 8 114 12 (22)A> 116
78 432 20 114 12 226 (22)A>
79 437 17 114 12 226 <A(11) 22
80 449 5 114 12 <A(11) 116 22
81 454 8 114 22 (22)A> 116 22
82 466 20 114 227 (22)A> 22
83 469 17 114 227 <A(11) 12
84 483 3 114 <A(11) 117 12
85 486 6 113 12 (22)A> 117 12
86 500 20 113 12 227 (22)A> 12
87 505 17 113 12 227 <A(11) 11
88 519 3 113 12 <A(11) 118
89 524 6 113 22 (22)A> 118
90 540 22 113 229 (22)A>
91 545 19 113 229 <A(11) 22
92 563 1 113 <A(11) 119 22
93 566 4 112 12 (22)A> 119 22
94 584 22 112 12 229 (22)A> 22
95 587 19 112 12 229 <A(11) 12
96 605 1 112 12 <A(11) 119 12
97 610 4 112 22 (22)A> 119 12
98 628 22 112 2210 (22)A> 12
99 633 19 112 2210 <A(11) 11
100 653 -1 112 <A(11) 1111
101 656 2 11 12 (22)A> 1111
102 678 24 11 12 2211 (22)A>
103 683 21 11 12 2211 <A(11) 22
104 705 -1 11 12 <A(11) 1111 22
105 710 2 11 22 (22)A> 1111 22
106 732 24 11 2212 (22)A> 22
107 735 21 11 2212 <A(11) 12
108 759 -3 11 <A(11) 1112 12
109 762 0 12 (22)A> 1112 12
110 786 24 12 2212 (22)A> 12
111 791 21 12 2212 <A(11) 11
112 815 -3 12 <A(11) 1113
113 820 0 22 (22)A> 1113
114 846 26 2214 (22)A>
115 851 23 2214 <A(11) 22
116 879 -5 <A(11) 1114 22
117 884 -2 01 (11)B> 1114 22
118 940 26 01 1114 (11)B> 22
119 942 28 01 1115 (11)B>
120 947 25 01 1115 <A(11) 20
121 950 28 01 1114 12 (22)A> 20
122 953 25 01 1114 12 <A(11) 10
123 958 28 01 1114 22 (22)A> 10
124 960 30 01 1114 222 (21)B>
125 963 27 01 1114 222 <A(12) 20
126 965 25 01 1114 22 <A(11) 12 20
127 967 23 01 1114 <A(11) 11 12 20
128 970 26 01 1113 12 (22)A> 11 12 20
129 972 28 01 1113 12 22 (22)A> 12 20
130 977 25 01 1113 12 22 <A(11) 11 20
131 979 23 01 1113 12 <A(11) 112 20
132 984 26 01 1113 22 (22)A> 112 20
133 988 30 01 1113 223 (22)A> 20
134 991 27 01 1113 223 <A(11) 10
135 997 21 01 1113 <A(11) 113 10
136 1000 24 01 1112 12 (22)A> 113 10
137 1006 30 01 1112 12 223 (22)A> 10
138 1008 32 01 1112 12 224 (21)B>
139 1011 29 01 1112 12 224 <A(12) 20
140 1013 27 01 1112 12 223 <A(11) 12 20
141 1019 21 01 1112 12 <A(11) 113 12 20
142 1024 24 01 1112 22 (22)A> 113 12 20
143 1030 30 01 1112 224 (22)A> 12 20
144 1035 27 01 1112 224 <A(11) 11 20
145 1043 19 01 1112 <A(11) 115 20
146 1046 22 01 1111 12 (22)A> 115 20
147 1056 32 01 1111 12 225 (22)A> 20
148 1059 29 01 1111 12 225 <A(11) 10
149 1069 19 01 1111 12 <A(11) 115 10
150 1074 22 01 1111 22 (22)A> 115 10
151 1084 32 01 1111 226 (22)A> 10
152 1086 34 01 1111 227 (21)B>
153 1089 31 01 1111 227 <A(12) 20
154 1091 29 01 1111 226 <A(11) 12 20
155 1103 17 01 1111 <A(11) 116 12 20
156 1106 20 01 1110 12 (22)A> 116 12 20
157 1118 32 01 1110 12 226 (22)A> 12 20
158 1123 29 01 1110 12 226 <A(11) 11 20
159 1135 17 01 1110 12 <A(11) 117 20
160 1140 20 01 1110 22 (22)A> 117 20
161 1154 34 01 1110 228 (22)A> 20
162 1157 31 01 1110 228 <A(11) 10
163 1173 15 01 1110 <A(11) 118 10
164 1176 18 01 119 12 (22)A> 118 10
165 1192 34 01 119 12 228 (22)A> 10
166 1194 36 01 119 12 229 (21)B>
167 1197 33 01 119 12 229 <A(12) 20
168 1199 31 01 119 12 228 <A(11) 12 20
169 1215 15 01 119 12 <A(11) 118 12 20
170 1220 18 01 119 22 (22)A> 118 12 20
171 1236 34 01 119 229 (22)A> 12 20
172 1241 31 01 119 229 <A(11) 11 20
173 1259 13 01 119 <A(11) 1110 20
174 1262 16 01 118 12 (22)A> 1110 20
175 1282 36 01 118 12 2210 (22)A> 20
176 1285 33 01 118 12 2210 <A(11) 10
177 1305 13 01 118 12 <A(11) 1110 10
178 1310 16 01 118 22 (22)A> 1110 10
179 1330 36 01 118 2211 (22)A> 10
180 1332 38 01 118 2212 (21)B>
181 1335 35 01 118 2212 <A(12) 20
182 1337 33 01 118 2211 <A(11) 12 20
183 1359 11 01 118 <A(11) 1111 12 20
184 1362 14 01 117 12 (22)A> 1111 12 20
185 1384 36 01 117 12 2211 (22)A> 12 20
186 1389 33 01 117 12 2211 <A(11) 11 20
187 1411 11 01 117 12 <A(11) 1112 20
188 1416 14 01 117 22 (22)A> 1112 20
189 1440 38 01 117 2213 (22)A> 20
190 1443 35 01 117 2213 <A(11) 10
191 1469 9 01 117 <A(11) 1113 10
192 1472 12 01 116 12 (22)A> 1113 10
193 1498 38 01 116 12 2213 (22)A> 10
194 1500 40 01 116 12 2214 (21)B>
195 1503 37 01 116 12 2214 <A(12) 20
196 1505 35 01 116 12 2213 <A(11) 12 20
197 1531 9 01 116 12 <A(11) 1113 12 20
198 1536 12 01 116 22 (22)A> 1113 12 20
199 1562 38 01 116 2214 (22)A> 12 20
200 1567 35 01 116 2214 <A(11) 11 20
Lines: 201
Top steps: 200
Macro steps: 200
Basic steps: 1567
Tape index: 35
nonzeros: 46
log10(nonzeros): 1.663
log10(steps ): 3.195
Input to awk program:
gohalt 1
nbs 3
T 3-state 3-symbol champion #18886871 of Allen Brady
C A.B.: 2 1 1 1 1 2 1-1 1 3-1 2 3 1 0 2 1 1 0 0 0 1-1 2 2 1 1
C The halting transition has been modified to print a 1
5T B1R A2R A1L C2L C0R B1R Z1R A2L B1R
: 5600 29403894
L 6
M 201
pref sim
machv AB3Y_b just simple
machv AB3Y_b-r with repetitions reduced
machv AB3Y_b-1 with tape symbol exponents
machv AB3Y_b-m as 2-bck-macro machine
machv AB3Y_b-a as 2-bck-macro machine with pure additive config-TRs
iam AB3Y_b-m
mtype 2 0
mmtyp 1
r 1
H 1
mac 0
E 2
sympr
HM 1
date Tue Jul 6 22:11:36 CEST 2010
edate Tue Jul 6 22:11:37 CEST 2010
bnspeed 1
Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $
$Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $
$Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $
$Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $
$Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $
$Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $
bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:11:36 CEST 2010