Comment: A.B.: 2 1 1 1 1 2 1-1 1 3-1 2 3 1 0 2 1 1 0 0 0 1-1 2 2 1 1 Comment: The halting transition has been modified to print a 1 Comment: This TM produces 5600 nonzeros in 29403894 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | |||||||
| A | B1R | A2R | A1L | 1 | right | B | 2 | right | A | 1 | left | A |
| B | C2L | C0R | B1R | 2 | left | C | 0 | right | C | 1 | right | B |
| C | Z1R | A2L | B1R | 1 | right | Z | 2 | left | A | 1 | right | B |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <C 2
3 -1 <A 2 2
4 0 1 B> 2 2
+ 6 2 13 B>
7 1 13 <C 2
8 0 1 1 <A 2 2
9 1 1 2 A> 2 2
10 0 1 2 <A 1 2
11 -1 1 <A 1 1 2
12 0 2 A> 1 1 2
+ 14 2 23 A> 2
15 1 23 <A 1
+ 18 -2 <A 14
19 -1 1 B> 14
20 0 1 0 C> 13
21 -1 1 0 <A 2 1 1
22 0 1 1 B> 2 1 1
23 1 13 B> 1 1
24 2 13 0 C> 1
25 1 13 0 <A 2
26 2 14 B> 2
27 3 15 B>
28 2 15 <C 2
29 1 14 <A 2 2
30 2 13 2 A> 2 2
31 1 13 2 <A 1 2
32 0 13 <A 1 1 2
33 1 1 1 2 A> 1 1 2
+ 35 3 1 1 23 A> 2
36 2 1 1 23 <A 1
+ 39 -1 1 1 <A 14
40 0 1 2 A> 14
+ 44 4 1 25 A>
45 5 1 25 1 B>
46 4 1 25 1 <C 2
47 3 1 25 <A 2 2
+ 52 -2 1 <A 15 2 2
53 -1 2 A> 15 2 2
+ 58 4 26 A> 2 2
59 3 26 <A 1 2
+ 65 -3 <A 17 2
66 -2 1 B> 17 2
67 -1 1 0 C> 16 2
68 -2 1 0 <A 2 15 2
69 -1 1 1 B> 2 15 2
70 0 13 B> 15 2
71 1 13 0 C> 14 2
72 0 13 0 <A 2 13 2
73 1 14 B> 2 13 2
74 2 15 B> 13 2
75 3 15 0 C> 1 1 2
76 2 15 0 <A 2 1 2
77 3 16 B> 2 1 2
78 4 17 B> 1 2
79 5 17 0 C> 2
80 6 17 0 1 B>
81 5 17 0 1 <C 2
82 4 17 0 <A 2 2
83 5 18 B> 2 2
+ 85 7 110 B>
86 6 110 <C 2
87 5 19 <A 2 2
88 6 18 2 A> 2 2
89 5 18 2 <A 1 2
90 4 18 <A 1 1 2
91 5 17 2 A> 1 1 2
+ 93 7 17 23 A> 2
94 6 17 23 <A 1
+ 97 3 17 <A 14
98 4 16 2 A> 14
+ 102 8 16 25 A>
103 9 16 25 1 B>
104 8 16 25 1 <C 2
105 7 16 25 <A 2 2
+ 110 2 16 <A 15 2 2
111 3 15 2 A> 15 2 2
+ 116 8 15 26 A> 2 2
117 7 15 26 <A 1 2
+ 123 1 15 <A 17 2
124 2 14 2 A> 17 2
+ 131 9 14 28 A> 2
132 8 14 28 <A 1
+ 140 0 14 <A 19
141 1 13 2 A> 19
+ 150 10 13 210 A>
151 11 13 210 1 B>
152 10 13 210 1 <C 2
153 9 13 210 <A 2 2
+ 163 -1 13 <A 110 2 2
164 0 1 1 2 A> 110 2 2
+ 174 10 1 1 211 A> 2 2
175 9 1 1 211 <A 1 2
+ 186 -2 1 1 <A 112 2
187 -1 1 2 A> 112 2
+ 199 11 1 213 A> 2
200 10 1 213 <A 1
+ 213 -3 1 <A 114
214 -2 2 A> 114
+ 228 12 215 A>
229 13 215 1 B>
230 12 215 1 <C 2
231 11 215 <A 2 2
+ 246 -4 <A 115 2 2
247 -3 1 B> 115 2 2
248 -2 1 0 C> 114 2 2
249 -3 1 0 <A 2 113 2 2
250 -2 1 1 B> 2 113 2 2
251 -1 13 B> 113 2 2
252 0 13 0 C> 112 2 2
253 -1 13 0 <A 2 111 2 2
254 0 14 B> 2 111 2 2
255 1 15 B> 111 2 2
256 2 15 0 C> 110 2 2
257 1 15 0 <A 2 19 2 2
258 2 16 B> 2 19 2 2
259 3 17 B> 19 2 2
260 4 17 0 C> 18 2 2
261 3 17 0 <A 2 17 2 2
262 4 18 B> 2 17 2 2
263 5 19 B> 17 2 2
264 6 19 0 C> 16 2 2
265 5 19 0 <A 2 15 2 2
266 6 110 B> 2 15 2 2
267 7 111 B> 15 2 2
268 8 111 0 C> 14 2 2
269 7 111 0 <A 2 13 2 2
270 8 112 B> 2 13 2 2
271 9 113 B> 13 2 2
272 10 113 0 C> 1 1 2 2
273 9 113 0 <A 2 1 2 2
274 10 114 B> 2 1 2 2
275 11 115 B> 1 2 2
276 12 115 0 C> 2 2
277 13 115 0 1 B> 2
278 14 115 0 1 1 B>
279 13 115 0 1 1 <C 2
280 12 115 0 1 <A 2 2
281 13 115 0 2 A> 2 2
282 12 115 0 2 <A 1 2
283 11 115 0 <A 1 1 2
284 12 116 B> 1 1 2
285 13 116 0 C> 1 2
286 12 116 0 <A 2 2
287 13 117 B> 2 2
+ 289 15 119 B>
290 14 119 <C 2
291 13 118 <A 2 2
292 14 117 2 A> 2 2
293 13 117 2 <A 1 2
294 12 117 <A 1 1 2
295 13 116 2 A> 1 1 2
+ 297 15 116 23 A> 2
298 14 116 23 <A 1
+ 301 11 116 <A 14
302 12 115 2 A> 14
+ 306 16 115 25 A>
307 17 115 25 1 B>
308 16 115 25 1 <C 2
309 15 115 25 <A 2 2
+ 314 10 115 <A 15 2 2
315 11 114 2 A> 15 2 2
+ 320 16 114 26 A> 2 2
321 15 114 26 <A 1 2
+ 327 9 114 <A 17 2
328 10 113 2 A> 17 2
+ 335 17 113 28 A> 2
336 16 113 28 <A 1
+ 344 8 113 <A 19
345 9 112 2 A> 19
+ 354 18 112 210 A>
355 19 112 210 1 B>
356 18 112 210 1 <C 2
357 17 112 210 <A 2 2
+ 367 7 112 <A 110 2 2
368 8 111 2 A> 110 2 2
+ 378 18 111 211 A> 2 2
379 17 111 211 <A 1 2
+ 390 6 111 <A 112 2
391 7 110 2 A> 112 2
+ 403 19 110 213 A> 2
404 18 110 213 <A 1
+ 417 5 110 <A 114
418 6 19 2 A> 114
+ 432 20 19 215 A>
433 21 19 215 1 B>
434 20 19 215 1 <C 2
435 19 19 215 <A 2 2
+ 450 4 19 <A 115 2 2
451 5 18 2 A> 115 2 2
+ 466 20 18 216 A> 2 2
467 19 18 216 <A 1 2
+ 483 3 18 <A 117 2
484 4 17 2 A> 117 2
+ 501 21 17 218 A> 2
502 20 17 218 <A 1
+ 520 2 17 <A 119
521 3 16 2 A> 119
+ 540 22 16 220 A>
541 23 16 220 1 B>
After 541 steps (201 lines): state = B.
Produced 27 nonzeros.
Tape index 23, scanned [-4 .. 22].
| State | Count | Execution count | First in step | ||||
|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
| A | 464 | 28 | 218 | 218 | 0 | 8 | 9 |
| B | 48 | 14 | 15 | 19 | 1 | 19 | 4 |
| C | 29 | 27 | 2 | 2 | 79 | ||