Comment: A.B.: 2 1 1 1 1 2 1-1 1 3-1 2 3 1 0 2 1 1 0 0 0 1-1 2 2 1 1 Comment: The halting transition has been modified to print a 1 Comment: This TM produces 5600 nonzeros in 29403894 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | |||||||
A | B1R | A2R | A1L | 1 | right | B | 2 | right | A | 1 | left | A |
B | C2L | C0R | B1R | 2 | left | C | 0 | right | C | 1 | right | B |
C | Z1R | A2L | B1R | 1 | right | Z | 2 | left | A | 1 | right | B |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 2-bck-macro machine. The same TM as 2-bck-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <C 2 3 -1 <A 2 2 4 0 1 B> 2 2 + 6 2 13 B> 7 1 13 <C 2 8 0 1 1 <A 2 2 9 1 1 2 A> 2 2 10 0 1 2 <A 1 2 11 -1 1 <A 1 1 2 12 0 2 A> 1 1 2 + 14 2 23 A> 2 15 1 23 <A 1 + 18 -2 <A 14 19 -1 1 B> 14 20 0 1 0 C> 13 21 -1 1 0 <A 2 1 1 22 0 1 1 B> 2 1 1 23 1 13 B> 1 1 24 2 13 0 C> 1 25 1 13 0 <A 2 26 2 14 B> 2 27 3 15 B> 28 2 15 <C 2 29 1 14 <A 2 2 30 2 13 2 A> 2 2 31 1 13 2 <A 1 2 32 0 13 <A 1 1 2 33 1 1 1 2 A> 1 1 2 + 35 3 1 1 23 A> 2 36 2 1 1 23 <A 1 + 39 -1 1 1 <A 14 40 0 1 2 A> 14 + 44 4 1 25 A> 45 5 1 25 1 B> 46 4 1 25 1 <C 2 47 3 1 25 <A 2 2 + 52 -2 1 <A 15 2 2 53 -1 2 A> 15 2 2 + 58 4 26 A> 2 2 59 3 26 <A 1 2 + 65 -3 <A 17 2 66 -2 1 B> 17 2 67 -1 1 0 C> 16 2 68 -2 1 0 <A 2 15 2 69 -1 1 1 B> 2 15 2 70 0 13 B> 15 2 71 1 13 0 C> 14 2 72 0 13 0 <A 2 13 2 73 1 14 B> 2 13 2 74 2 15 B> 13 2 75 3 15 0 C> 1 1 2 76 2 15 0 <A 2 1 2 77 3 16 B> 2 1 2 78 4 17 B> 1 2 79 5 17 0 C> 2 80 6 17 0 1 B> 81 5 17 0 1 <C 2 82 4 17 0 <A 2 2 83 5 18 B> 2 2 + 85 7 110 B> 86 6 110 <C 2 87 5 19 <A 2 2 88 6 18 2 A> 2 2 89 5 18 2 <A 1 2 90 4 18 <A 1 1 2 91 5 17 2 A> 1 1 2 + 93 7 17 23 A> 2 94 6 17 23 <A 1 + 97 3 17 <A 14 98 4 16 2 A> 14 + 102 8 16 25 A> 103 9 16 25 1 B> 104 8 16 25 1 <C 2 105 7 16 25 <A 2 2 + 110 2 16 <A 15 2 2 111 3 15 2 A> 15 2 2 + 116 8 15 26 A> 2 2 117 7 15 26 <A 1 2 + 123 1 15 <A 17 2 124 2 14 2 A> 17 2 + 131 9 14 28 A> 2 132 8 14 28 <A 1 + 140 0 14 <A 19 141 1 13 2 A> 19 + 150 10 13 210 A> 151 11 13 210 1 B> 152 10 13 210 1 <C 2 153 9 13 210 <A 2 2 + 163 -1 13 <A 110 2 2 164 0 1 1 2 A> 110 2 2 + 174 10 1 1 211 A> 2 2 175 9 1 1 211 <A 1 2 + 186 -2 1 1 <A 112 2 187 -1 1 2 A> 112 2 + 199 11 1 213 A> 2 200 10 1 213 <A 1 + 213 -3 1 <A 114 214 -2 2 A> 114 + 228 12 215 A> 229 13 215 1 B> 230 12 215 1 <C 2 231 11 215 <A 2 2 + 246 -4 <A 115 2 2 247 -3 1 B> 115 2 2 248 -2 1 0 C> 114 2 2 249 -3 1 0 <A 2 113 2 2 250 -2 1 1 B> 2 113 2 2 251 -1 13 B> 113 2 2 252 0 13 0 C> 112 2 2 253 -1 13 0 <A 2 111 2 2 254 0 14 B> 2 111 2 2 255 1 15 B> 111 2 2 256 2 15 0 C> 110 2 2 257 1 15 0 <A 2 19 2 2 258 2 16 B> 2 19 2 2 259 3 17 B> 19 2 2 260 4 17 0 C> 18 2 2 261 3 17 0 <A 2 17 2 2 262 4 18 B> 2 17 2 2 263 5 19 B> 17 2 2 264 6 19 0 C> 16 2 2 265 5 19 0 <A 2 15 2 2 266 6 110 B> 2 15 2 2 267 7 111 B> 15 2 2 268 8 111 0 C> 14 2 2 269 7 111 0 <A 2 13 2 2 270 8 112 B> 2 13 2 2 271 9 113 B> 13 2 2 272 10 113 0 C> 1 1 2 2 273 9 113 0 <A 2 1 2 2 274 10 114 B> 2 1 2 2 275 11 115 B> 1 2 2 276 12 115 0 C> 2 2 277 13 115 0 1 B> 2 278 14 115 0 1 1 B> 279 13 115 0 1 1 <C 2 280 12 115 0 1 <A 2 2 281 13 115 0 2 A> 2 2 282 12 115 0 2 <A 1 2 283 11 115 0 <A 1 1 2 284 12 116 B> 1 1 2 285 13 116 0 C> 1 2 286 12 116 0 <A 2 2 287 13 117 B> 2 2 + 289 15 119 B> 290 14 119 <C 2 291 13 118 <A 2 2 292 14 117 2 A> 2 2 293 13 117 2 <A 1 2 294 12 117 <A 1 1 2 295 13 116 2 A> 1 1 2 + 297 15 116 23 A> 2 298 14 116 23 <A 1 + 301 11 116 <A 14 302 12 115 2 A> 14 + 306 16 115 25 A> 307 17 115 25 1 B> 308 16 115 25 1 <C 2 309 15 115 25 <A 2 2 + 314 10 115 <A 15 2 2 315 11 114 2 A> 15 2 2 + 320 16 114 26 A> 2 2 321 15 114 26 <A 1 2 + 327 9 114 <A 17 2 328 10 113 2 A> 17 2 + 335 17 113 28 A> 2 336 16 113 28 <A 1 + 344 8 113 <A 19 345 9 112 2 A> 19 + 354 18 112 210 A> 355 19 112 210 1 B> 356 18 112 210 1 <C 2 357 17 112 210 <A 2 2 + 367 7 112 <A 110 2 2 368 8 111 2 A> 110 2 2 + 378 18 111 211 A> 2 2 379 17 111 211 <A 1 2 + 390 6 111 <A 112 2 391 7 110 2 A> 112 2 + 403 19 110 213 A> 2 404 18 110 213 <A 1 + 417 5 110 <A 114 418 6 19 2 A> 114 + 432 20 19 215 A> 433 21 19 215 1 B> 434 20 19 215 1 <C 2 435 19 19 215 <A 2 2 + 450 4 19 <A 115 2 2 451 5 18 2 A> 115 2 2 + 466 20 18 216 A> 2 2 467 19 18 216 <A 1 2 + 483 3 18 <A 117 2 484 4 17 2 A> 117 2 + 501 21 17 218 A> 2 502 20 17 218 <A 1 + 520 2 17 <A 119 521 3 16 2 A> 119 + 540 22 16 220 A> 541 23 16 220 1 B> After 541 steps (201 lines): state = B. Produced 27 nonzeros. Tape index 23, scanned [-4 .. 22].
State | Count | Execution count | First in step | ||||
---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
A | 464 | 28 | 218 | 218 | 0 | 8 | 9 |
B | 48 | 14 | 15 | 19 | 1 | 19 | 4 |
C | 29 | 27 | 2 | 2 | 79 |