3-state 3-symbol former champion of Myron Souris

Comment: This TM produces 36089 nonzeros in 310341163 steps.

State on
0
on
1
on
2
on 0 on 1 on 2
Print Move Goto Print Move Goto Print Move Goto
1 1R2 2R1 2R3 1 right 2 2 right 1 2 right 3
2 1L3 1Rh 1L1 1 left 3 1 right h 1 left 1
3 1R1 2L2 1L3 1 right 1 2 left 2 1 left 3
Transition table
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as bck-macro machine.
The same TM as bck-macro machine with pure additive config-TRs.

Pushing initial machine.
Pushing BCK machine.

Steps BasSteps BasTpos  Tape contents
    0        0       0  (0)1>
    1        1       1  (1)2>
    2        3      -1  <2(2) 1
    3        4      -2  <3(1) 2 1
    4        6       0  1 (2)1> 2 1
    5        7       1  1 2 (2)3> 1
    6        9      -1  1 2 <1(1) 2
    7       12      -2  1 <1(1) 22
    8       14       0  2 (2)1> 22
    9       15       1  22 (2)3> 2
   10       17      -1  22 <3(1) 1
   11       19      -3  <3(1) 13
   12       21      -1  1 (2)1> 13
   13       24       2  1 23 (2)1>
   14       25       3  1 24 (1)2>
   15       27       1  1 24 <2(2) 1
   16       28       0  1 23 <1(1) 2 1
   17       37      -3  1 <1(1) 24 1
   18       39      -1  2 (2)1> 24 1
   19       40       0  22 (2)3> 23 1
   20       42      -2  22 <3(1) 1 22 1
   21       44      -4  <3(1) 13 22 1
   22       46      -2  1 (2)1> 13 22 1
   23       49       1  1 23 (2)1> 22 1
   24       50       2  1 24 (2)3> 2 1
   25       52       0  1 24 <3(1) 12
   26       56      -4  1 <3(1) 16
   27       57      -5  <2(2) 17
   28       58      -6  <3(1) 2 17
   29       60      -4  1 (2)1> 2 17
   30       61      -3  1 2 (2)3> 17
   31       63      -5  1 2 <1(1) 2 16
   32       66      -6  1 <1(1) 22 16
   33       68      -4  2 (2)1> 22 16
   34       69      -3  22 (2)3> 2 16
   35       71      -5  22 <3(1) 17
   36       73      -7  <3(1) 19
   37       75      -5  1 (2)1> 19
   38       84       4  1 29 (2)1>
   39       85       5  1 210 (1)2>
   40       87       3  1 210 <2(2) 1
   41       88       2  1 29 <1(1) 2 1
   42      115      -7  1 <1(1) 210 1
   43      117      -5  2 (2)1> 210 1
   44      118      -4  22 (2)3> 29 1
   45      120      -6  22 <3(1) 1 28 1
   46      122      -8  <3(1) 13 28 1
   47      124      -6  1 (2)1> 13 28 1
   48      127      -3  1 23 (2)1> 28 1
   49      128      -2  1 24 (2)3> 27 1
   50      130      -4  1 24 <3(1) 1 26 1
   51      134      -8  1 <3(1) 15 26 1
   52      135      -9  <2(2) 16 26 1
   53      136     -10  <3(1) 2 16 26 1
   54      138      -8  1 (2)1> 2 16 26 1
   55      139      -7  1 2 (2)3> 16 26 1
   56      141      -9  1 2 <1(1) 2 15 26 1
   57      144     -10  1 <1(1) 22 15 26 1
   58      146      -8  2 (2)1> 22 15 26 1
   59      147      -7  22 (2)3> 2 15 26 1
   60      149      -9  22 <3(1) 16 26 1
   61      151     -11  <3(1) 18 26 1
   62      153      -9  1 (2)1> 18 26 1
   63      161      -1  1 28 (2)1> 26 1
   64      162       0  1 29 (2)3> 25 1
   65      164      -2  1 29 <3(1) 1 24 1
   66      173     -11  1 <3(1) 110 24 1
   67      174     -12  <2(2) 111 24 1
   68      175     -13  <3(1) 2 111 24 1
   69      177     -11  1 (2)1> 2 111 24 1
   70      178     -10  1 2 (2)3> 111 24 1
   71      180     -12  1 2 <1(1) 2 110 24 1
   72      183     -13  1 <1(1) 22 110 24 1
   73      185     -11  2 (2)1> 22 110 24 1
   74      186     -10  22 (2)3> 2 110 24 1
   75      188     -12  22 <3(1) 111 24 1
   76      190     -14  <3(1) 113 24 1
   77      192     -12  1 (2)1> 113 24 1
   78      205       1  1 213 (2)1> 24 1
   79      206       2  1 214 (2)3> 23 1
   80      208       0  1 214 <3(1) 1 22 1
   81      222     -14  1 <3(1) 115 22 1
   82      223     -15  <2(2) 116 22 1
   83      224     -16  <3(1) 2 116 22 1
   84      226     -14  1 (2)1> 2 116 22 1
   85      227     -13  1 2 (2)3> 116 22 1
   86      229     -15  1 2 <1(1) 2 115 22 1
   87      232     -16  1 <1(1) 22 115 22 1
   88      234     -14  2 (2)1> 22 115 22 1
   89      235     -13  22 (2)3> 2 115 22 1
   90      237     -15  22 <3(1) 116 22 1
   91      239     -17  <3(1) 118 22 1
   92      241     -15  1 (2)1> 118 22 1
   93      259       3  1 218 (2)1> 22 1
   94      260       4  1 219 (2)3> 2 1
   95      262       2  1 219 <3(1) 12
   96      281     -17  1 <3(1) 121
   97      282     -18  <2(2) 122
   98      283     -19  <3(1) 2 122
   99      285     -17  1 (2)1> 2 122
  100      286     -16  1 2 (2)3> 122
  101      288     -18  1 2 <1(1) 2 121
  102      291     -19  1 <1(1) 22 121
  103      293     -17  2 (2)1> 22 121
  104      294     -16  22 (2)3> 2 121
  105      296     -18  22 <3(1) 122
  106      298     -20  <3(1) 124
  107      300     -18  1 (2)1> 124
  108      324       6  1 224 (2)1>
  109      325       7  1 225 (1)2>
  110      327       5  1 225 <2(2) 1
  111      328       4  1 224 <1(1) 2 1
  112      400     -20  1 <1(1) 225 1
  113      402     -18  2 (2)1> 225 1
  114      403     -17  22 (2)3> 224 1
  115      405     -19  22 <3(1) 1 223 1
  116      407     -21  <3(1) 13 223 1
  117      409     -19  1 (2)1> 13 223 1
  118      412     -16  1 23 (2)1> 223 1
  119      413     -15  1 24 (2)3> 222 1
  120      415     -17  1 24 <3(1) 1 221 1
  121      419     -21  1 <3(1) 15 221 1
  122      420     -22  <2(2) 16 221 1
  123      421     -23  <3(1) 2 16 221 1
  124      423     -21  1 (2)1> 2 16 221 1
  125      424     -20  1 2 (2)3> 16 221 1
  126      426     -22  1 2 <1(1) 2 15 221 1
  127      429     -23  1 <1(1) 22 15 221 1
  128      431     -21  2 (2)1> 22 15 221 1
  129      432     -20  22 (2)3> 2 15 221 1
  130      434     -22  22 <3(1) 16 221 1
  131      436     -24  <3(1) 18 221 1
  132      438     -22  1 (2)1> 18 221 1
  133      446     -14  1 28 (2)1> 221 1
  134      447     -13  1 29 (2)3> 220 1
  135      449     -15  1 29 <3(1) 1 219 1
  136      458     -24  1 <3(1) 110 219 1
  137      459     -25  <2(2) 111 219 1
  138      460     -26  <3(1) 2 111 219 1
  139      462     -24  1 (2)1> 2 111 219 1
  140      463     -23  1 2 (2)3> 111 219 1
  141      465     -25  1 2 <1(1) 2 110 219 1
  142      468     -26  1 <1(1) 22 110 219 1
  143      470     -24  2 (2)1> 22 110 219 1
  144      471     -23  22 (2)3> 2 110 219 1
  145      473     -25  22 <3(1) 111 219 1
  146      475     -27  <3(1) 113 219 1
  147      477     -25  1 (2)1> 113 219 1
  148      490     -12  1 213 (2)1> 219 1
  149      491     -11  1 214 (2)3> 218 1
  150      493     -13  1 214 <3(1) 1 217 1
  151      507     -27  1 <3(1) 115 217 1
  152      508     -28  <2(2) 116 217 1
  153      509     -29  <3(1) 2 116 217 1
  154      511     -27  1 (2)1> 2 116 217 1
  155      512     -26  1 2 (2)3> 116 217 1
  156      514     -28  1 2 <1(1) 2 115 217 1
  157      517     -29  1 <1(1) 22 115 217 1
  158      519     -27  2 (2)1> 22 115 217 1
  159      520     -26  22 (2)3> 2 115 217 1
  160      522     -28  22 <3(1) 116 217 1
  161      524     -30  <3(1) 118 217 1
  162      526     -28  1 (2)1> 118 217 1
  163      544     -10  1 218 (2)1> 217 1
  164      545      -9  1 219 (2)3> 216 1
  165      547     -11  1 219 <3(1) 1 215 1
  166      566     -30  1 <3(1) 120 215 1
  167      567     -31  <2(2) 121 215 1
  168      568     -32  <3(1) 2 121 215 1
  169      570     -30  1 (2)1> 2 121 215 1
  170      571     -29  1 2 (2)3> 121 215 1
  171      573     -31  1 2 <1(1) 2 120 215 1
  172      576     -32  1 <1(1) 22 120 215 1
  173      578     -30  2 (2)1> 22 120 215 1
  174      579     -29  22 (2)3> 2 120 215 1
  175      581     -31  22 <3(1) 121 215 1
  176      583     -33  <3(1) 123 215 1
  177      585     -31  1 (2)1> 123 215 1
  178      608      -8  1 223 (2)1> 215 1
  179      609      -7  1 224 (2)3> 214 1
  180      611      -9  1 224 <3(1) 1 213 1
  181      635     -33  1 <3(1) 125 213 1
  182      636     -34  <2(2) 126 213 1
  183      637     -35  <3(1) 2 126 213 1
  184      639     -33  1 (2)1> 2 126 213 1
  185      640     -32  1 2 (2)3> 126 213 1
  186      642     -34  1 2 <1(1) 2 125 213 1
  187      645     -35  1 <1(1) 22 125 213 1
  188      647     -33  2 (2)1> 22 125 213 1
  189      648     -32  22 (2)3> 2 125 213 1
  190      650     -34  22 <3(1) 126 213 1
  191      652     -36  <3(1) 128 213 1
  192      654     -34  1 (2)1> 128 213 1
  193      682      -6  1 228 (2)1> 213 1
  194      683      -5  1 229 (2)3> 212 1
  195      685      -7  1 229 <3(1) 1 211 1
  196      714     -36  1 <3(1) 130 211 1
  197      715     -37  <2(2) 131 211 1
  198      716     -38  <3(1) 2 131 211 1
  199      718     -36  1 (2)1> 2 131 211 1
  200      719     -35  1 2 (2)3> 131 211 1

Lines:       201
Top steps:   200
Macro steps: 200
Basic steps: 719
Tape index:  -35
nonzeros:    46
log10(nonzeros):    1.663
log10(steps   ):    2.857

The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Input to awk program:
    gohalt 1
    nbs 3
    T 3-state 3-symbol former champion of Myron Souris
    5t  1R2 2R1 2R3  1L3 1Rh 1L1  1R1 2L2 1L3
    : 36089 310341163
    L 20
    M	201
    pref	sim
    machv MS33_a  	just simple
    machv MS33_a-r	with repetitions reduced
    machv MS33_a-1	with tape symbol exponents
    machv MS33_a-m	as bck-macro machine
    machv MS33_a-a	as bck-macro machine with pure additive config-TRs
    iam	MS33_a-m
    mtype	0
    mmtyp	1
    r	1
    H	1
    mac	0
    E	2
    sympr	
    HM	1
    date	Tue Jul  6 22:11:41 CEST 2010
    edate	Tue Jul  6 22:11:41 CEST 2010
    bnspeed	1

Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:11:41 CEST 2010
Ready: Tue Jul 6 22:11:41 CEST 2010