Comment: This TM produces 36089 nonzeros in 310341163 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | |||||||
| 1 | 1R2 | 2R1 | 2R3 | 1 | right | 2 | 2 | right | 1 | 2 | right | 3 |
| 2 | 1L3 | 1Rh | 1L1 | 1 | left | 3 | 1 | right | h | 1 | left | 1 |
| 3 | 1R1 | 2L2 | 1L3 | 1 | right | 1 | 2 | left | 2 | 1 | left | 3 |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as bck-macro machine.
The same TM as bck-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <1
1 1 1 2>
2 0 1 <3 1
3 -1 <2 2 1
4 -2 <3 1 2 1
5 -1 1 1> 1 2 1
6 0 1 2 1> 2 1
7 1 1 2 2 3> 1
8 0 1 2 2 <2 2
9 -1 1 2 <1 1 2
10 0 1 2 3> 1 2
11 -1 1 2 <2 2 2
12 -2 1 <1 1 2 2
13 -1 2 1> 1 2 2
14 0 2 2 1> 2 2
15 1 23 3> 2
16 0 23 <3 1
+ 19 -3 <3 14
20 -2 1 1> 14
+ 24 2 1 24 1>
25 3 1 24 1 2>
26 2 1 24 1 <3 1
27 1 1 24 <2 2 1
28 0 1 23 <1 1 2 1
29 1 1 23 3> 1 2 1
30 0 1 23 <2 2 2 1
31 -1 1 2 2 <1 1 2 2 1
32 0 1 2 2 3> 1 2 2 1
33 -1 1 2 2 <2 23 1
34 -2 1 2 <1 1 23 1
35 -1 1 2 3> 1 23 1
36 -2 1 2 <2 24 1
37 -3 1 <1 1 24 1
38 -2 2 1> 1 24 1
39 -1 2 2 1> 24 1
40 0 23 3> 23 1
41 -1 23 <3 1 2 2 1
+ 44 -4 <3 14 2 2 1
45 -3 1 1> 14 2 2 1
+ 49 1 1 24 1> 2 2 1
50 2 1 25 3> 2 1
51 1 1 25 <3 1 1
+ 56 -4 1 <3 17
57 -5 <2 2 17
58 -6 <3 1 2 17
59 -5 1 1> 1 2 17
60 -4 1 2 1> 2 17
61 -3 1 2 2 3> 17
62 -4 1 2 2 <2 2 16
63 -5 1 2 <1 1 2 16
64 -4 1 2 3> 1 2 16
65 -5 1 2 <2 2 2 16
66 -6 1 <1 1 2 2 16
67 -5 2 1> 1 2 2 16
68 -4 2 2 1> 2 2 16
69 -3 23 3> 2 16
70 -4 23 <3 17
+ 73 -7 <3 110
74 -6 1 1> 110
+ 84 4 1 210 1>
85 5 1 210 1 2>
86 4 1 210 1 <3 1
87 3 1 210 <2 2 1
88 2 1 29 <1 1 2 1
89 3 1 29 3> 1 2 1
90 2 1 29 <2 2 2 1
91 1 1 28 <1 1 2 2 1
92 2 1 28 3> 1 2 2 1
93 1 1 28 <2 23 1
94 0 1 27 <1 1 23 1
95 1 1 27 3> 1 23 1
96 0 1 27 <2 24 1
97 -1 1 26 <1 1 24 1
98 0 1 26 3> 1 24 1
99 -1 1 26 <2 25 1
100 -2 1 25 <1 1 25 1
101 -1 1 25 3> 1 25 1
102 -2 1 25 <2 26 1
103 -3 1 24 <1 1 26 1
104 -2 1 24 3> 1 26 1
105 -3 1 24 <2 27 1
106 -4 1 23 <1 1 27 1
107 -3 1 23 3> 1 27 1
108 -4 1 23 <2 28 1
109 -5 1 2 2 <1 1 28 1
110 -4 1 2 2 3> 1 28 1
111 -5 1 2 2 <2 29 1
112 -6 1 2 <1 1 29 1
113 -5 1 2 3> 1 29 1
114 -6 1 2 <2 210 1
115 -7 1 <1 1 210 1
116 -6 2 1> 1 210 1
117 -5 2 2 1> 210 1
118 -4 23 3> 29 1
119 -5 23 <3 1 28 1
+ 122 -8 <3 14 28 1
123 -7 1 1> 14 28 1
+ 127 -3 1 24 1> 28 1
128 -2 1 25 3> 27 1
129 -3 1 25 <3 1 26 1
+ 134 -8 1 <3 16 26 1
135 -9 <2 2 16 26 1
136 -10 <3 1 2 16 26 1
137 -9 1 1> 1 2 16 26 1
138 -8 1 2 1> 2 16 26 1
139 -7 1 2 2 3> 16 26 1
140 -8 1 2 2 <2 2 15 26 1
141 -9 1 2 <1 1 2 15 26 1
142 -8 1 2 3> 1 2 15 26 1
143 -9 1 2 <2 2 2 15 26 1
144 -10 1 <1 1 2 2 15 26 1
145 -9 2 1> 1 2 2 15 26 1
146 -8 2 2 1> 2 2 15 26 1
147 -7 23 3> 2 15 26 1
148 -8 23 <3 16 26 1
+ 151 -11 <3 19 26 1
152 -10 1 1> 19 26 1
+ 161 -1 1 29 1> 26 1
162 0 1 210 3> 25 1
163 -1 1 210 <3 1 24 1
+ 173 -11 1 <3 111 24 1
174 -12 <2 2 111 24 1
175 -13 <3 1 2 111 24 1
176 -12 1 1> 1 2 111 24 1
177 -11 1 2 1> 2 111 24 1
178 -10 1 2 2 3> 111 24 1
179 -11 1 2 2 <2 2 110 24 1
180 -12 1 2 <1 1 2 110 24 1
181 -11 1 2 3> 1 2 110 24 1
182 -12 1 2 <2 2 2 110 24 1
183 -13 1 <1 1 2 2 110 24 1
184 -12 2 1> 1 2 2 110 24 1
185 -11 2 2 1> 2 2 110 24 1
186 -10 23 3> 2 110 24 1
187 -11 23 <3 111 24 1
+ 190 -14 <3 114 24 1
191 -13 1 1> 114 24 1
+ 205 1 1 214 1> 24 1
206 2 1 215 3> 23 1
207 1 1 215 <3 1 2 2 1
+ 222 -14 1 <3 116 2 2 1
223 -15 <2 2 116 2 2 1
224 -16 <3 1 2 116 2 2 1
225 -15 1 1> 1 2 116 2 2 1
226 -14 1 2 1> 2 116 2 2 1
227 -13 1 2 2 3> 116 2 2 1
228 -14 1 2 2 <2 2 115 2 2 1
229 -15 1 2 <1 1 2 115 2 2 1
230 -14 1 2 3> 1 2 115 2 2 1
231 -15 1 2 <2 2 2 115 2 2 1
232 -16 1 <1 1 2 2 115 2 2 1
233 -15 2 1> 1 2 2 115 2 2 1
234 -14 2 2 1> 2 2 115 2 2 1
235 -13 23 3> 2 115 2 2 1
236 -14 23 <3 116 2 2 1
+ 239 -17 <3 119 2 2 1
240 -16 1 1> 119 2 2 1
+ 259 3 1 219 1> 2 2 1
260 4 1 220 3> 2 1
261 3 1 220 <3 1 1
+ 281 -17 1 <3 122
282 -18 <2 2 122
283 -19 <3 1 2 122
284 -18 1 1> 1 2 122
285 -17 1 2 1> 2 122
286 -16 1 2 2 3> 122
287 -17 1 2 2 <2 2 121
288 -18 1 2 <1 1 2 121
289 -17 1 2 3> 1 2 121
290 -18 1 2 <2 2 2 121
291 -19 1 <1 1 2 2 121
292 -18 2 1> 1 2 2 121
293 -17 2 2 1> 2 2 121
294 -16 23 3> 2 121
295 -17 23 <3 122
+ 298 -20 <3 125
299 -19 1 1> 125
+ 324 6 1 225 1>
325 7 1 225 1 2>
326 6 1 225 1 <3 1
327 5 1 225 <2 2 1
328 4 1 224 <1 1 2 1
329 5 1 224 3> 1 2 1
330 4 1 224 <2 2 2 1
331 3 1 223 <1 1 2 2 1
332 4 1 223 3> 1 2 2 1
333 3 1 223 <2 23 1
334 2 1 222 <1 1 23 1
335 3 1 222 3> 1 23 1
336 2 1 222 <2 24 1
337 1 1 221 <1 1 24 1
338 2 1 221 3> 1 24 1
339 1 1 221 <2 25 1
340 0 1 220 <1 1 25 1
341 1 1 220 3> 1 25 1
342 0 1 220 <2 26 1
343 -1 1 219 <1 1 26 1
344 0 1 219 3> 1 26 1
345 -1 1 219 <2 27 1
346 -2 1 218 <1 1 27 1
347 -1 1 218 3> 1 27 1
After 347 steps (201 lines): state = 3.
Produced 28 nonzeros.
Tape index -1, scanned [-20 .. 7].
| State | Count | Execution count | First in step | ||||
|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
| 1 | 159 | 4 | 111 | 44 | 0 | 5 | 6 |
| 2 | 43 | 10 | 33 | 1 | 8 | ||
| 3 | 145 | 14 | 39 | 92 | 4 | 2 | 15 |