Comment: This TM produces 36089 nonzeros in 310341163 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | |||||||
1 | 1R2 | 2R1 | 2R3 | 1 | right | 2 | 2 | right | 1 | 2 | right | 3 |
2 | 1L3 | 1Rh | 1L1 | 1 | left | 3 | 1 | right | h | 1 | left | 1 |
3 | 1R1 | 2L2 | 1L3 | 1 | right | 1 | 2 | left | 2 | 1 | left | 3 |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as bck-macro machine. The same TM as bck-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <1 1 1 1 2> 2 0 1 <3 1 3 -1 <2 2 1 4 -2 <3 1 2 1 5 -1 1 1> 1 2 1 6 0 1 2 1> 2 1 7 1 1 2 2 3> 1 8 0 1 2 2 <2 2 9 -1 1 2 <1 1 2 10 0 1 2 3> 1 2 11 -1 1 2 <2 2 2 12 -2 1 <1 1 2 2 13 -1 2 1> 1 2 2 14 0 2 2 1> 2 2 15 1 23 3> 2 16 0 23 <3 1 + 19 -3 <3 14 20 -2 1 1> 14 + 24 2 1 24 1> 25 3 1 24 1 2> 26 2 1 24 1 <3 1 27 1 1 24 <2 2 1 28 0 1 23 <1 1 2 1 29 1 1 23 3> 1 2 1 30 0 1 23 <2 2 2 1 31 -1 1 2 2 <1 1 2 2 1 32 0 1 2 2 3> 1 2 2 1 33 -1 1 2 2 <2 23 1 34 -2 1 2 <1 1 23 1 35 -1 1 2 3> 1 23 1 36 -2 1 2 <2 24 1 37 -3 1 <1 1 24 1 38 -2 2 1> 1 24 1 39 -1 2 2 1> 24 1 40 0 23 3> 23 1 41 -1 23 <3 1 2 2 1 + 44 -4 <3 14 2 2 1 45 -3 1 1> 14 2 2 1 + 49 1 1 24 1> 2 2 1 50 2 1 25 3> 2 1 51 1 1 25 <3 1 1 + 56 -4 1 <3 17 57 -5 <2 2 17 58 -6 <3 1 2 17 59 -5 1 1> 1 2 17 60 -4 1 2 1> 2 17 61 -3 1 2 2 3> 17 62 -4 1 2 2 <2 2 16 63 -5 1 2 <1 1 2 16 64 -4 1 2 3> 1 2 16 65 -5 1 2 <2 2 2 16 66 -6 1 <1 1 2 2 16 67 -5 2 1> 1 2 2 16 68 -4 2 2 1> 2 2 16 69 -3 23 3> 2 16 70 -4 23 <3 17 + 73 -7 <3 110 74 -6 1 1> 110 + 84 4 1 210 1> 85 5 1 210 1 2> 86 4 1 210 1 <3 1 87 3 1 210 <2 2 1 88 2 1 29 <1 1 2 1 89 3 1 29 3> 1 2 1 90 2 1 29 <2 2 2 1 91 1 1 28 <1 1 2 2 1 92 2 1 28 3> 1 2 2 1 93 1 1 28 <2 23 1 94 0 1 27 <1 1 23 1 95 1 1 27 3> 1 23 1 96 0 1 27 <2 24 1 97 -1 1 26 <1 1 24 1 98 0 1 26 3> 1 24 1 99 -1 1 26 <2 25 1 100 -2 1 25 <1 1 25 1 101 -1 1 25 3> 1 25 1 102 -2 1 25 <2 26 1 103 -3 1 24 <1 1 26 1 104 -2 1 24 3> 1 26 1 105 -3 1 24 <2 27 1 106 -4 1 23 <1 1 27 1 107 -3 1 23 3> 1 27 1 108 -4 1 23 <2 28 1 109 -5 1 2 2 <1 1 28 1 110 -4 1 2 2 3> 1 28 1 111 -5 1 2 2 <2 29 1 112 -6 1 2 <1 1 29 1 113 -5 1 2 3> 1 29 1 114 -6 1 2 <2 210 1 115 -7 1 <1 1 210 1 116 -6 2 1> 1 210 1 117 -5 2 2 1> 210 1 118 -4 23 3> 29 1 119 -5 23 <3 1 28 1 + 122 -8 <3 14 28 1 123 -7 1 1> 14 28 1 + 127 -3 1 24 1> 28 1 128 -2 1 25 3> 27 1 129 -3 1 25 <3 1 26 1 + 134 -8 1 <3 16 26 1 135 -9 <2 2 16 26 1 136 -10 <3 1 2 16 26 1 137 -9 1 1> 1 2 16 26 1 138 -8 1 2 1> 2 16 26 1 139 -7 1 2 2 3> 16 26 1 140 -8 1 2 2 <2 2 15 26 1 141 -9 1 2 <1 1 2 15 26 1 142 -8 1 2 3> 1 2 15 26 1 143 -9 1 2 <2 2 2 15 26 1 144 -10 1 <1 1 2 2 15 26 1 145 -9 2 1> 1 2 2 15 26 1 146 -8 2 2 1> 2 2 15 26 1 147 -7 23 3> 2 15 26 1 148 -8 23 <3 16 26 1 + 151 -11 <3 19 26 1 152 -10 1 1> 19 26 1 + 161 -1 1 29 1> 26 1 162 0 1 210 3> 25 1 163 -1 1 210 <3 1 24 1 + 173 -11 1 <3 111 24 1 174 -12 <2 2 111 24 1 175 -13 <3 1 2 111 24 1 176 -12 1 1> 1 2 111 24 1 177 -11 1 2 1> 2 111 24 1 178 -10 1 2 2 3> 111 24 1 179 -11 1 2 2 <2 2 110 24 1 180 -12 1 2 <1 1 2 110 24 1 181 -11 1 2 3> 1 2 110 24 1 182 -12 1 2 <2 2 2 110 24 1 183 -13 1 <1 1 2 2 110 24 1 184 -12 2 1> 1 2 2 110 24 1 185 -11 2 2 1> 2 2 110 24 1 186 -10 23 3> 2 110 24 1 187 -11 23 <3 111 24 1 + 190 -14 <3 114 24 1 191 -13 1 1> 114 24 1 + 205 1 1 214 1> 24 1 206 2 1 215 3> 23 1 207 1 1 215 <3 1 2 2 1 + 222 -14 1 <3 116 2 2 1 223 -15 <2 2 116 2 2 1 224 -16 <3 1 2 116 2 2 1 225 -15 1 1> 1 2 116 2 2 1 226 -14 1 2 1> 2 116 2 2 1 227 -13 1 2 2 3> 116 2 2 1 228 -14 1 2 2 <2 2 115 2 2 1 229 -15 1 2 <1 1 2 115 2 2 1 230 -14 1 2 3> 1 2 115 2 2 1 231 -15 1 2 <2 2 2 115 2 2 1 232 -16 1 <1 1 2 2 115 2 2 1 233 -15 2 1> 1 2 2 115 2 2 1 234 -14 2 2 1> 2 2 115 2 2 1 235 -13 23 3> 2 115 2 2 1 236 -14 23 <3 116 2 2 1 + 239 -17 <3 119 2 2 1 240 -16 1 1> 119 2 2 1 + 259 3 1 219 1> 2 2 1 260 4 1 220 3> 2 1 261 3 1 220 <3 1 1 + 281 -17 1 <3 122 282 -18 <2 2 122 283 -19 <3 1 2 122 284 -18 1 1> 1 2 122 285 -17 1 2 1> 2 122 286 -16 1 2 2 3> 122 287 -17 1 2 2 <2 2 121 288 -18 1 2 <1 1 2 121 289 -17 1 2 3> 1 2 121 290 -18 1 2 <2 2 2 121 291 -19 1 <1 1 2 2 121 292 -18 2 1> 1 2 2 121 293 -17 2 2 1> 2 2 121 294 -16 23 3> 2 121 295 -17 23 <3 122 + 298 -20 <3 125 299 -19 1 1> 125 + 324 6 1 225 1> 325 7 1 225 1 2> 326 6 1 225 1 <3 1 327 5 1 225 <2 2 1 328 4 1 224 <1 1 2 1 329 5 1 224 3> 1 2 1 330 4 1 224 <2 2 2 1 331 3 1 223 <1 1 2 2 1 332 4 1 223 3> 1 2 2 1 333 3 1 223 <2 23 1 334 2 1 222 <1 1 23 1 335 3 1 222 3> 1 23 1 336 2 1 222 <2 24 1 337 1 1 221 <1 1 24 1 338 2 1 221 3> 1 24 1 339 1 1 221 <2 25 1 340 0 1 220 <1 1 25 1 341 1 1 220 3> 1 25 1 342 0 1 220 <2 26 1 343 -1 1 219 <1 1 26 1 344 0 1 219 3> 1 26 1 345 -1 1 219 <2 27 1 346 -2 1 218 <1 1 27 1 347 -1 1 218 3> 1 27 1 After 347 steps (201 lines): state = 3. Produced 28 nonzeros. Tape index -1, scanned [-20 .. 7].
State | Count | Execution count | First in step | ||||
---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
1 | 159 | 4 | 111 | 44 | 0 | 5 | 6 |
2 | 43 | 10 | 33 | 1 | 8 | ||
3 | 145 | 14 | 39 | 92 | 4 | 2 | 15 |