4-state 3-symbol #f (T.J. & S. Ligocki)

Comment: This TM produces >2.5x10^4561 nonzeros in >3.9x10^9122 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on 0 on 1 on 2
Print Move Goto Print Move Goto Print Move Goto
A 1RB 2LD 1RH 1 right B 2 left D 1 right H
B 2LC 2RC 2RB 2 left C 2 right C 2 right B
C 1LD 0RC 1RC 1 left D 0 right C 1 right C
D 2LA 2LD 0LB 2 left A 2 left D 0 left B
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . . . . 0
     1    1 B . . . . . 10
     2    0 C . . . . . 12
     3    1 C . . . . . 02
     4    2 C . . . . . 010
     5    1 D . . . . . 011
     6    0 D . . . . . 021
     7   -1 A . . . . .0221
     8    0 B . . . . .1221
     9    1 B . . . . .1221
    10    2 B . . . . .1221
    11    3 C . . . . .12220
    12    2 D . . . . .12221
    13    1 B . . . . .12201
    14    2 B . . . . .12201
    15    1 C . . . . .12221
    16    2 C . . . . .12121
    17    3 C . . . . .12111
    18    4 C . . . . .121100
    19    3 D . . . . .121101
    20    2 A . . . . .121121
    21    1 D . . . . .121221
    22    0 D . . . . .122221
    23   -1 B . . . . .102221
    24    0 C . . . . .202221
    25   -1 D . . . . .212221
    26   -2 B . . . . 0012221
    27   -3 C . . . .02012221
    28   -4 D . . . 012012221
    29   -5 A . . .0212012221
    30   -4 B . . .1212012221
    31   -3 B . . .1212012221
    32   -2 C . . .1222012221
    33   -1 C . . .1221012221
    34   -2 D . . .1221112221
    35   -3 D . . .1222112221
    36   -4 B . . .1202112221
    37   -3 B . . .1202112221
    38   -4 C . . .1222112221
    39   -3 C . . .1122112221
    40   -2 C . . .1112112221
    41   -1 C . . .1111112221
    42    0 C . . .1111012221
    43    1 C . . .1111002221
    44    2 C . . .1111001221
    45    3 C . . .1111001121
    46    4 C . . .1111001111
    47    5 C . . .11110011100
    48    4 D . . .11110011101
    49    3 A . . .11110011121
    50    2 D . . .11110011221
    51    1 D . . .11110012221
    52    0 D . . .11110022221
    53   -1 A . . .11110222221
    54    0 B . . .11111222221
    55    1 B . . .11111222221
    56    2 B . . .11111222221
    57    3 B . . .11111222221
    58    4 B . . .11111222221
    59    5 B . . .11111222221
    60    6 C . . .111112222220
    61    5 D . . .111112222221
    62    4 B . . .111112222201
    63    5 B . . .111112222201
    64    4 C . . .111112222221
    65    5 C . . .111112222121
    66    6 C . . .111112222111
    67    7 C . . .1111122221100
    68    6 D . . .1111122221101
    69    5 A . . .1111122221121
    70    4 D . . .1111122221221
    71    3 D . . .1111122222221
    72    2 B . . .1111122202221
    73    3 B . . .1111122202221
    74    2 C . . .1111122222221
    75    3 C . . .1111122122221
    76    4 C . . .1111122112221
    77    5 C . . .1111122111221
    78    6 C . . .1111122111121
    79    7 C . . .1111122111111
    80    8 C . . .11111221111100
    81    7 D . . .11111221111101
    82    6 A . . .11111221111121
    83    5 D . . .11111221111221
    84    4 D . . .11111221112221
    85    3 D . . .11111221122221
    86    2 D . . .11111221222221
    87    1 D . . .11111222222221
    88    0 B . . .11111202222221
    89    1 B . . .11111202222221
    90    0 C . . .11111222222221
    91    1 C . . .11111122222221
    92    2 C . . .11111112222221
    93    3 C . . .11111111222221
    94    4 C . . .11111111122221
    95    5 C . . .11111111112221
    96    6 C . . .11111111111221
    97    7 C . . .11111111111121
    98    8 C . . .11111111111111
    99    9 C . . .111111111111100
   100    8 D . . .111111111111101
   101    7 A . . .111111111111121
   102    6 D . . .111111111111221
   103    5 D . . .111111111112221
   104    4 D . . .111111111122221
   105    3 D . . .111111111222221
   106    2 D . . .111111112222221
   107    1 D . . .111111122222221
   108    0 D . . .111111222222221
   109   -1 D . . .111112222222221
   110   -2 D . . .111122222222221
   111   -3 D . . .111222222222221
   112   -4 D . . .112222222222221
   113   -5 D . . .122222222222221
   114   -6 D . . 0222222222222221
   115   -7 A . .02222222222222221
   116   -6 B . .12222222222222221
   117   -5 B . .12222222222222221
   118   -4 B . .12222222222222221
   119   -3 B . .12222222222222221
   120   -2 B . .12222222222222221
   121   -1 B . .12222222222222221
   122    0 B . .12222222222222221
   123    1 B . .12222222222222221
   124    2 B . .12222222222222221
   125    3 B . .12222222222222221
   126    4 B . .12222222222222221
   127    5 B . .12222222222222221
   128    6 B . .12222222222222221
   129    7 B . .12222222222222221
   130    8 B . .12222222222222221
   131    9 B . .12222222222222221
   132   10 C . .122222222222222220
   133    9 D . .122222222222222221
   134    8 B . .122222222222222201
   135    9 B . .122222222222222201
   136    8 C . .122222222222222221
   137    9 C . .122222222222222121
   138   10 C . .122222222222222111
   139   11 C . .1222222222222221100
   140   10 D . .1222222222222221101
   141    9 A . .1222222222222221121
   142    8 D . .1222222222222221221
   143    7 D . .1222222222222222221
   144    6 B . .1222222222222202221
   145    7 B . .1222222222222202221
   146    6 C . .1222222222222222221
   147    7 C . .1222222222222122221
   148    8 C . .1222222222222112221
   149    9 C . .1222222222222111221
   150   10 C . .1222222222222111121
   151   11 C . .1222222222222111111
   152   12 C . .12222222222221111100
   153   11 D . .12222222222221111101
   154   10 A . .12222222222221111121
   155    9 D . .12222222222221111221
   156    8 D . .12222222222221112221
   157    7 D . .12222222222221122221
   158    6 D . .12222222222221222221
   159    5 D . .12222222222222222221
   160    4 B . .12222222222202222221
   161    5 B . .12222222222202222221
   162    4 C . .12222222222222222221
   163    5 C . .12222222222122222221
   164    6 C . .12222222222112222221
   165    7 C . .12222222222111222221
   166    8 C . .12222222222111122221
   167    9 C . .12222222222111112221
   168   10 C . .12222222222111111221
   169   11 C . .12222222222111111121
   170   12 C . .12222222222111111111
   171   13 C . .122222222221111111100
   172   12 D . .122222222221111111101
   173   11 A . .122222222221111111121
   174   10 D . .122222222221111111221
   175    9 D . .122222222221111112221
   176    8 D . .122222222221111122221
   177    7 D . .122222222221111222221
   178    6 D . .122222222221112222221
   179    5 D . .122222222221122222221
   180    4 D . .122222222221222222221
   181    3 D . .122222222222222222221
   182    2 B . .122222222202222222221
   183    3 B . .122222222202222222221
   184    2 C . .122222222222222222221
   185    3 C . .122222222122222222221
   186    4 C . .122222222112222222221
   187    5 C . .122222222111222222221
   188    6 C . .122222222111122222221
   189    7 C . .122222222111112222221
   190    8 C . .122222222111111222221
   191    9 C . .122222222111111122221
   192   10 C . .122222222111111112221
   193   11 C . .122222222111111111221
   194   12 C . .122222222111111111121
   195   13 C . .122222222111111111111
   196   14 C . .1222222221111111111100
   197   13 D . .1222222221111111111101
   198   12 A . .1222222221111111111121
   199   11 D . .1222222221111111111221
   200   10 D . .1222222221111111112221

After 200 steps (201 lines): state = D.
Produced     22 nonzeros.
Tape index 10, scanned [-7 .. 14].
State Count Execution count First in step
on 0 on 1 on 2 on 0 on 1 on 2
A 14 5 9   0 20  
B 48 11 5 32 1 10 8
C 79 16 12 51 4 2 3
D 59 13 35 11 6 5 12
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:14:11 CEST 2010