Comment: This TM produces >2.5x10^4561 nonzeros in >3.9x10^9122 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | |||||||
A | 1RB | 2LD | 1RH | 1 | right | B | 2 | left | D | 1 | right | H |
B | 2LC | 2RC | 2RB | 2 | left | C | 2 | right | C | 2 | right | B |
C | 1LD | 0RC | 1RC | 1 | left | D | 0 | right | C | 1 | right | C |
D | 2LA | 2LD | 0LB | 2 | left | A | 2 | left | D | 0 | left | B |
Simulation is done just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. The same TM as 1-bck-macro machine. The same TM as 1-bck-macro machine with pure additive config-TRs. Step Tpos St Tape contents 0 0 A . . . . . 0 1 1 B . . . . . 10 2 0 C . . . . . 12 3 1 C . . . . . 02 4 2 C . . . . . 010 5 1 D . . . . . 011 6 0 D . . . . . 021 7 -1 A . . . . .0221 8 0 B . . . . .1221 9 1 B . . . . .1221 10 2 B . . . . .1221 11 3 C . . . . .12220 12 2 D . . . . .12221 13 1 B . . . . .12201 14 2 B . . . . .12201 15 1 C . . . . .12221 16 2 C . . . . .12121 17 3 C . . . . .12111 18 4 C . . . . .121100 19 3 D . . . . .121101 20 2 A . . . . .121121 21 1 D . . . . .121221 22 0 D . . . . .122221 23 -1 B . . . . .102221 24 0 C . . . . .202221 25 -1 D . . . . .212221 26 -2 B . . . . 0012221 27 -3 C . . . .02012221 28 -4 D . . . 012012221 29 -5 A . . .0212012221 30 -4 B . . .1212012221 31 -3 B . . .1212012221 32 -2 C . . .1222012221 33 -1 C . . .1221012221 34 -2 D . . .1221112221 35 -3 D . . .1222112221 36 -4 B . . .1202112221 37 -3 B . . .1202112221 38 -4 C . . .1222112221 39 -3 C . . .1122112221 40 -2 C . . .1112112221 41 -1 C . . .1111112221 42 0 C . . .1111012221 43 1 C . . .1111002221 44 2 C . . .1111001221 45 3 C . . .1111001121 46 4 C . . .1111001111 47 5 C . . .11110011100 48 4 D . . .11110011101 49 3 A . . .11110011121 50 2 D . . .11110011221 51 1 D . . .11110012221 52 0 D . . .11110022221 53 -1 A . . .11110222221 54 0 B . . .11111222221 55 1 B . . .11111222221 56 2 B . . .11111222221 57 3 B . . .11111222221 58 4 B . . .11111222221 59 5 B . . .11111222221 60 6 C . . .111112222220 61 5 D . . .111112222221 62 4 B . . .111112222201 63 5 B . . .111112222201 64 4 C . . .111112222221 65 5 C . . .111112222121 66 6 C . . .111112222111 67 7 C . . .1111122221100 68 6 D . . .1111122221101 69 5 A . . .1111122221121 70 4 D . . .1111122221221 71 3 D . . .1111122222221 72 2 B . . .1111122202221 73 3 B . . .1111122202221 74 2 C . . .1111122222221 75 3 C . . .1111122122221 76 4 C . . .1111122112221 77 5 C . . .1111122111221 78 6 C . . .1111122111121 79 7 C . . .1111122111111 80 8 C . . .11111221111100 81 7 D . . .11111221111101 82 6 A . . .11111221111121 83 5 D . . .11111221111221 84 4 D . . .11111221112221 85 3 D . . .11111221122221 86 2 D . . .11111221222221 87 1 D . . .11111222222221 88 0 B . . .11111202222221 89 1 B . . .11111202222221 90 0 C . . .11111222222221 91 1 C . . .11111122222221 92 2 C . . .11111112222221 93 3 C . . .11111111222221 94 4 C . . .11111111122221 95 5 C . . .11111111112221 96 6 C . . .11111111111221 97 7 C . . .11111111111121 98 8 C . . .11111111111111 99 9 C . . .111111111111100 100 8 D . . .111111111111101 101 7 A . . .111111111111121 102 6 D . . .111111111111221 103 5 D . . .111111111112221 104 4 D . . .111111111122221 105 3 D . . .111111111222221 106 2 D . . .111111112222221 107 1 D . . .111111122222221 108 0 D . . .111111222222221 109 -1 D . . .111112222222221 110 -2 D . . .111122222222221 111 -3 D . . .111222222222221 112 -4 D . . .112222222222221 113 -5 D . . .122222222222221 114 -6 D . . 0222222222222221 115 -7 A . .02222222222222221 116 -6 B . .12222222222222221 117 -5 B . .12222222222222221 118 -4 B . .12222222222222221 119 -3 B . .12222222222222221 120 -2 B . .12222222222222221 121 -1 B . .12222222222222221 122 0 B . .12222222222222221 123 1 B . .12222222222222221 124 2 B . .12222222222222221 125 3 B . .12222222222222221 126 4 B . .12222222222222221 127 5 B . .12222222222222221 128 6 B . .12222222222222221 129 7 B . .12222222222222221 130 8 B . .12222222222222221 131 9 B . .12222222222222221 132 10 C . .122222222222222220 133 9 D . .122222222222222221 134 8 B . .122222222222222201 135 9 B . .122222222222222201 136 8 C . .122222222222222221 137 9 C . .122222222222222121 138 10 C . .122222222222222111 139 11 C . .1222222222222221100 140 10 D . .1222222222222221101 141 9 A . .1222222222222221121 142 8 D . .1222222222222221221 143 7 D . .1222222222222222221 144 6 B . .1222222222222202221 145 7 B . .1222222222222202221 146 6 C . .1222222222222222221 147 7 C . .1222222222222122221 148 8 C . .1222222222222112221 149 9 C . .1222222222222111221 150 10 C . .1222222222222111121 151 11 C . .1222222222222111111 152 12 C . .12222222222221111100 153 11 D . .12222222222221111101 154 10 A . .12222222222221111121 155 9 D . .12222222222221111221 156 8 D . .12222222222221112221 157 7 D . .12222222222221122221 158 6 D . .12222222222221222221 159 5 D . .12222222222222222221 160 4 B . .12222222222202222221 161 5 B . .12222222222202222221 162 4 C . .12222222222222222221 163 5 C . .12222222222122222221 164 6 C . .12222222222112222221 165 7 C . .12222222222111222221 166 8 C . .12222222222111122221 167 9 C . .12222222222111112221 168 10 C . .12222222222111111221 169 11 C . .12222222222111111121 170 12 C . .12222222222111111111 171 13 C . .122222222221111111100 172 12 D . .122222222221111111101 173 11 A . .122222222221111111121 174 10 D . .122222222221111111221 175 9 D . .122222222221111112221 176 8 D . .122222222221111122221 177 7 D . .122222222221111222221 178 6 D . .122222222221112222221 179 5 D . .122222222221122222221 180 4 D . .122222222221222222221 181 3 D . .122222222222222222221 182 2 B . .122222222202222222221 183 3 B . .122222222202222222221 184 2 C . .122222222222222222221 185 3 C . .122222222122222222221 186 4 C . .122222222112222222221 187 5 C . .122222222111222222221 188 6 C . .122222222111122222221 189 7 C . .122222222111112222221 190 8 C . .122222222111111222221 191 9 C . .122222222111111122221 192 10 C . .122222222111111112221 193 11 C . .122222222111111111221 194 12 C . .122222222111111111121 195 13 C . .122222222111111111111 196 14 C . .1222222221111111111100 197 13 D . .1222222221111111111101 198 12 A . .1222222221111111111121 199 11 D . .1222222221111111111221 200 10 D . .1222222221111111112221 After 200 steps (201 lines): state = D. Produced 22 nonzeros. Tape index 10, scanned [-7 .. 14].
State | Count | Execution count | First in step | ||||
---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
A | 14 | 5 | 9 | 0 | 20 | ||
B | 48 | 11 | 5 | 32 | 1 | 10 | 8 |
C | 79 | 16 | 12 | 51 | 4 | 2 | 3 |
D | 59 | 13 | 35 | 11 | 6 | 5 | 12 |