Comment: This TM produces >2.5x10^4561 nonzeros in >3.9x10^9122 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | |||||||
A | 1RB | 2LD | 1RH | 1 | right | B | 2 | left | D | 1 | right | H |
B | 2LC | 2RC | 2RB | 2 | left | C | 2 | right | C | 2 | right | B |
C | 1LD | 0RC | 1RC | 1 | left | D | 0 | right | C | 1 | right | C |
D | 2LA | 2LD | 0LB | 2 | left | A | 2 | left | D | 0 | left | B |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-bck-macro machine. The same TM as 1-bck-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <C 2 3 1 C> 2 4 2 1 C> 5 1 1 <D 1 6 0 <D 2 1 7 -1 <A 2 2 1 8 0 1 B> 2 2 1 + 10 2 1 2 2 B> 1 11 3 1 23 C> 12 2 1 23 <D 1 13 1 1 2 2 <B 0 1 14 2 1 2 2 B> 0 1 15 1 1 2 2 <C 2 1 16 2 1 2 1 C> 2 1 17 3 1 2 1 1 C> 1 18 4 1 2 1 1 0 C> 19 3 1 2 1 1 0 <D 1 20 2 1 2 1 1 <A 2 1 21 1 1 2 1 <D 2 2 1 22 0 1 2 <D 23 1 23 -1 1 <B 0 23 1 24 0 2 C> 0 23 1 25 -1 2 <D 1 23 1 26 -2 <B 0 1 23 1 27 -3 <C 2 0 1 23 1 28 -4 <D 1 2 0 1 23 1 29 -5 <A 2 1 2 0 1 23 1 30 -4 1 B> 2 1 2 0 1 23 1 31 -3 1 2 B> 1 2 0 1 23 1 32 -2 1 2 2 C> 2 0 1 23 1 33 -1 1 2 2 1 C> 0 1 23 1 34 -2 1 2 2 1 <D 1 1 23 1 35 -3 1 2 2 <D 2 1 1 23 1 36 -4 1 2 <B 0 2 1 1 23 1 37 -3 1 2 B> 0 2 1 1 23 1 38 -4 1 2 <C 2 2 1 1 23 1 39 -3 1 1 C> 2 2 1 1 23 1 + 41 -1 14 C> 1 1 23 1 + 43 1 14 0 0 C> 23 1 + 46 4 14 0 0 13 C> 1 47 5 14 0 0 13 0 C> 48 4 14 0 0 13 0 <D 1 49 3 14 0 0 13 <A 2 1 50 2 14 0 0 1 1 <D 2 2 1 + 52 0 14 0 0 <D 24 1 53 -1 14 0 <A 25 1 54 0 15 B> 25 1 + 59 5 15 25 B> 1 60 6 15 26 C> 61 5 15 26 <D 1 62 4 15 25 <B 0 1 63 5 15 25 B> 0 1 64 4 15 25 <C 2 1 65 5 15 24 1 C> 2 1 66 6 15 24 1 1 C> 1 67 7 15 24 1 1 0 C> 68 6 15 24 1 1 0 <D 1 69 5 15 24 1 1 <A 2 1 70 4 15 24 1 <D 2 2 1 71 3 15 24 <D 23 1 72 2 15 23 <B 0 23 1 73 3 15 23 B> 0 23 1 74 2 15 23 <C 24 1 75 3 15 2 2 1 C> 24 1 + 79 7 15 2 2 15 C> 1 80 8 15 2 2 15 0 C> 81 7 15 2 2 15 0 <D 1 82 6 15 2 2 15 <A 2 1 83 5 15 2 2 14 <D 2 2 1 + 87 1 15 2 2 <D 26 1 88 0 15 2 <B 0 26 1 89 1 15 2 B> 0 26 1 90 0 15 2 <C 27 1 91 1 16 C> 27 1 + 98 8 113 C> 1 99 9 113 0 C> 100 8 113 0 <D 1 101 7 113 <A 2 1 102 6 112 <D 2 2 1 + 114 -6 <D 214 1 115 -7 <A 215 1 116 -6 1 B> 215 1 + 131 9 1 215 B> 1 132 10 1 216 C> 133 9 1 216 <D 1 134 8 1 215 <B 0 1 135 9 1 215 B> 0 1 136 8 1 215 <C 2 1 137 9 1 214 1 C> 2 1 138 10 1 214 1 1 C> 1 139 11 1 214 1 1 0 C> 140 10 1 214 1 1 0 <D 1 141 9 1 214 1 1 <A 2 1 142 8 1 214 1 <D 2 2 1 143 7 1 214 <D 23 1 144 6 1 213 <B 0 23 1 145 7 1 213 B> 0 23 1 146 6 1 213 <C 24 1 147 7 1 212 1 C> 24 1 + 151 11 1 212 15 C> 1 152 12 1 212 15 0 C> 153 11 1 212 15 0 <D 1 154 10 1 212 15 <A 2 1 155 9 1 212 14 <D 2 2 1 + 159 5 1 212 <D 26 1 160 4 1 211 <B 0 26 1 161 5 1 211 B> 0 26 1 162 4 1 211 <C 27 1 163 5 1 210 1 C> 27 1 + 170 12 1 210 18 C> 1 171 13 1 210 18 0 C> 172 12 1 210 18 0 <D 1 173 11 1 210 18 <A 2 1 174 10 1 210 17 <D 2 2 1 + 181 3 1 210 <D 29 1 182 2 1 29 <B 0 29 1 183 3 1 29 B> 0 29 1 184 2 1 29 <C 210 1 185 3 1 28 1 C> 210 1 + 195 13 1 28 111 C> 1 196 14 1 28 111 0 C> 197 13 1 28 111 0 <D 1 198 12 1 28 111 <A 2 1 199 11 1 28 110 <D 2 2 1 + 209 1 1 28 <D 212 1 210 0 1 27 <B 0 212 1 211 1 1 27 B> 0 212 1 212 0 1 27 <C 213 1 213 1 1 26 1 C> 213 1 + 226 14 1 26 114 C> 1 227 15 1 26 114 0 C> 228 14 1 26 114 0 <D 1 229 13 1 26 114 <A 2 1 230 12 1 26 113 <D 2 2 1 + 243 -1 1 26 <D 215 1 244 -2 1 25 <B 0 215 1 245 -1 1 25 B> 0 215 1 246 -2 1 25 <C 216 1 247 -1 1 24 1 C> 216 1 + 263 15 1 24 117 C> 1 264 16 1 24 117 0 C> 265 15 1 24 117 0 <D 1 266 14 1 24 117 <A 2 1 267 13 1 24 116 <D 2 2 1 + 283 -3 1 24 <D 218 1 284 -4 1 23 <B 0 218 1 285 -3 1 23 B> 0 218 1 286 -4 1 23 <C 219 1 287 -3 1 2 2 1 C> 219 1 + 306 16 1 2 2 120 C> 1 307 17 1 2 2 120 0 C> 308 16 1 2 2 120 0 <D 1 309 15 1 2 2 120 <A 2 1 310 14 1 2 2 119 <D 2 2 1 + 329 -5 1 2 2 <D 221 1 330 -6 1 2 <B 0 221 1 331 -5 1 2 B> 0 221 1 332 -6 1 2 <C 222 1 333 -5 1 1 C> 222 1 + 355 17 124 C> 1 356 18 124 0 C> 357 17 124 0 <D 1 358 16 124 <A 2 1 359 15 123 <D 2 2 1 + 382 -8 <D 225 1 383 -9 <A 226 1 384 -8 1 B> 226 1 + 410 18 1 226 B> 1 411 19 1 227 C> 412 18 1 227 <D 1 413 17 1 226 <B 0 1 414 18 1 226 B> 0 1 415 17 1 226 <C 2 1 416 18 1 225 1 C> 2 1 417 19 1 225 1 1 C> 1 418 20 1 225 1 1 0 C> 419 19 1 225 1 1 0 <D 1 420 18 1 225 1 1 <A 2 1 421 17 1 225 1 <D 2 2 1 422 16 1 225 <D 23 1 423 15 1 224 <B 0 23 1 424 16 1 224 B> 0 23 1 425 15 1 224 <C 24 1 426 16 1 223 1 C> 24 1 + 430 20 1 223 15 C> 1 431 21 1 223 15 0 C> 432 20 1 223 15 0 <D 1 433 19 1 223 15 <A 2 1 434 18 1 223 14 <D 2 2 1 + 438 14 1 223 <D 26 1 439 13 1 222 <B 0 26 1 440 14 1 222 B> 0 26 1 441 13 1 222 <C 27 1 442 14 1 221 1 C> 27 1 + 449 21 1 221 18 C> 1 450 22 1 221 18 0 C> 451 21 1 221 18 0 <D 1 452 20 1 221 18 <A 2 1 453 19 1 221 17 <D 2 2 1 After 453 steps (201 lines): state = D. Produced 32 nonzeros. Tape index 19, scanned [-9 .. 22].
State | Count | Execution count | First in step | ||||
---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
A | 22 | 6 | 16 | 0 | 20 | ||
B | 89 | 18 | 6 | 65 | 1 | 10 | 8 |
C | 183 | 24 | 19 | 140 | 4 | 2 | 3 |
D | 159 | 21 | 120 | 18 | 6 | 5 | 12 |