Comment: This TM produces >3.7x10^6518 nonzeros in >5.2x10^13036 steps. Comment: This is the currently best known 3x4 TM
State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
A | 1RB | 1RA | 2LB | 3LA | 1 | right | B | 1 | right | A | 2 | left | B | 3 | left | A |
B | 2LA | 0LB | 1LC | 1LB | 2 | left | A | 0 | left | B | 1 | left | C | 1 | left | B |
C | 3RB | 3RC | 1RH | 1LC | 3 | right | B | 3 | right | C | 1 | right | H | 1 | left | C |
The same TM just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. Simulation is done as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Pushing initial machine. Pushing macro factor 1. Steps BasSteps BasTpos Tape contents 0 0 0 A> 1 1 1 1 B> 2 2 0 1 <A 2 3 3 1 1 A> 2 4 4 0 1 <B 2 5 5 -1 <B 0 2 6 6 -2 <A 2 0 2 7 7 -1 1 B> 2 0 2 8 8 -2 1 <C 1 0 2 9 9 -1 3 C> 1 0 2 10 10 0 32 C> 0 2 11 11 1 33 B> 2 12 12 0 33 <C 1 13 15 -3 <C 14 14 16 -2 3 B> 14 15 17 -3 3 <B 0 13 16 18 -4 <B 1 0 13 17 19 -5 <A 2 1 0 13 18 20 -4 1 B> 2 1 0 13 19 21 -5 1 <C 12 0 13 20 22 -4 3 C> 12 0 13 21 24 -2 33 C> 0 13 22 25 -1 34 B> 13 23 26 -2 34 <B 0 12 24 30 -6 <B 14 0 12 25 31 -7 <A 2 14 0 12 26 32 -6 1 B> 2 14 0 12 27 33 -7 1 <C 15 0 12 28 34 -6 3 C> 15 0 12 29 39 -1 36 C> 0 12 30 40 0 37 B> 12 31 41 -1 37 <B 0 1 32 48 -8 <B 17 0 1 33 49 -9 <A 2 17 0 1 34 50 -8 1 B> 2 17 0 1 35 51 -9 1 <C 18 0 1 36 52 -8 3 C> 18 0 1 37 60 0 39 C> 0 1 38 61 1 310 B> 1 39 62 0 310 <B 40 72 -10 <B 110 41 73 -11 <A 2 110 42 74 -10 1 B> 2 110 43 75 -11 1 <C 111 44 76 -10 3 C> 111 45 87 1 312 C> 46 88 2 313 B> 47 89 1 313 <A 2 48 102 -12 <A 313 2 49 103 -11 1 B> 313 2 50 104 -12 1 <B 1 312 2 51 105 -13 <B 0 1 312 2 52 106 -14 <A 2 0 1 312 2 53 107 -13 1 B> 2 0 1 312 2 54 108 -14 1 <C 1 0 1 312 2 55 109 -13 3 C> 1 0 1 312 2 56 110 -12 32 C> 0 1 312 2 57 111 -11 33 B> 1 312 2 58 112 -12 33 <B 0 312 2 59 115 -15 <B 13 0 312 2 60 116 -16 <A 2 13 0 312 2 61 117 -15 1 B> 2 13 0 312 2 62 118 -16 1 <C 14 0 312 2 63 119 -15 3 C> 14 0 312 2 64 123 -11 35 C> 0 312 2 65 124 -10 36 B> 312 2 66 125 -11 36 <B 1 311 2 67 131 -17 <B 17 311 2 68 132 -18 <A 2 17 311 2 69 133 -17 1 B> 2 17 311 2 70 134 -18 1 <C 18 311 2 71 135 -17 3 C> 18 311 2 72 143 -9 39 C> 311 2 73 144 -10 39 <C 1 310 2 74 153 -19 <C 110 310 2 75 154 -18 3 B> 110 310 2 76 155 -19 3 <B 0 19 310 2 77 156 -20 <B 1 0 19 310 2 78 157 -21 <A 2 1 0 19 310 2 79 158 -20 1 B> 2 1 0 19 310 2 80 159 -21 1 <C 12 0 19 310 2 81 160 -20 3 C> 12 0 19 310 2 82 162 -18 33 C> 0 19 310 2 83 163 -17 34 B> 19 310 2 84 164 -18 34 <B 0 18 310 2 85 168 -22 <B 14 0 18 310 2 86 169 -23 <A 2 14 0 18 310 2 87 170 -22 1 B> 2 14 0 18 310 2 88 171 -23 1 <C 15 0 18 310 2 89 172 -22 3 C> 15 0 18 310 2 90 177 -17 36 C> 0 18 310 2 91 178 -16 37 B> 18 310 2 92 179 -17 37 <B 0 17 310 2 93 186 -24 <B 17 0 17 310 2 94 187 -25 <A 2 17 0 17 310 2 95 188 -24 1 B> 2 17 0 17 310 2 96 189 -25 1 <C 18 0 17 310 2 97 190 -24 3 C> 18 0 17 310 2 98 198 -16 39 C> 0 17 310 2 99 199 -15 310 B> 17 310 2 100 200 -16 310 <B 0 16 310 2 101 210 -26 <B 110 0 16 310 2 102 211 -27 <A 2 110 0 16 310 2 103 212 -26 1 B> 2 110 0 16 310 2 104 213 -27 1 <C 111 0 16 310 2 105 214 -26 3 C> 111 0 16 310 2 106 225 -15 312 C> 0 16 310 2 107 226 -14 313 B> 16 310 2 108 227 -15 313 <B 0 15 310 2 109 240 -28 <B 113 0 15 310 2 110 241 -29 <A 2 113 0 15 310 2 111 242 -28 1 B> 2 113 0 15 310 2 112 243 -29 1 <C 114 0 15 310 2 113 244 -28 3 C> 114 0 15 310 2 114 258 -14 315 C> 0 15 310 2 115 259 -13 316 B> 15 310 2 116 260 -14 316 <B 0 14 310 2 117 276 -30 <B 116 0 14 310 2 118 277 -31 <A 2 116 0 14 310 2 119 278 -30 1 B> 2 116 0 14 310 2 120 279 -31 1 <C 117 0 14 310 2 121 280 -30 3 C> 117 0 14 310 2 122 297 -13 318 C> 0 14 310 2 123 298 -12 319 B> 14 310 2 124 299 -13 319 <B 0 13 310 2 125 318 -32 <B 119 0 13 310 2 126 319 -33 <A 2 119 0 13 310 2 127 320 -32 1 B> 2 119 0 13 310 2 128 321 -33 1 <C 120 0 13 310 2 129 322 -32 3 C> 120 0 13 310 2 130 342 -12 321 C> 0 13 310 2 131 343 -11 322 B> 13 310 2 132 344 -12 322 <B 0 12 310 2 133 366 -34 <B 122 0 12 310 2 134 367 -35 <A 2 122 0 12 310 2 135 368 -34 1 B> 2 122 0 12 310 2 136 369 -35 1 <C 123 0 12 310 2 137 370 -34 3 C> 123 0 12 310 2 138 393 -11 324 C> 0 12 310 2 139 394 -10 325 B> 12 310 2 140 395 -11 325 <B 0 1 310 2 141 420 -36 <B 125 0 1 310 2 142 421 -37 <A 2 125 0 1 310 2 143 422 -36 1 B> 2 125 0 1 310 2 144 423 -37 1 <C 126 0 1 310 2 145 424 -36 3 C> 126 0 1 310 2 146 450 -10 327 C> 0 1 310 2 147 451 -9 328 B> 1 310 2 148 452 -10 328 <B 0 310 2 149 480 -38 <B 128 0 310 2 150 481 -39 <A 2 128 0 310 2 151 482 -38 1 B> 2 128 0 310 2 152 483 -39 1 <C 129 0 310 2 153 484 -38 3 C> 129 0 310 2 154 513 -9 330 C> 0 310 2 155 514 -8 331 B> 310 2 156 515 -9 331 <B 1 39 2 157 546 -40 <B 132 39 2 158 547 -41 <A 2 132 39 2 159 548 -40 1 B> 2 132 39 2 160 549 -41 1 <C 133 39 2 161 550 -40 3 C> 133 39 2 162 583 -7 334 C> 39 2 163 584 -8 334 <C 1 38 2 164 618 -42 <C 135 38 2 165 619 -41 3 B> 135 38 2 166 620 -42 3 <B 0 134 38 2 167 621 -43 <B 1 0 134 38 2 168 622 -44 <A 2 1 0 134 38 2 169 623 -43 1 B> 2 1 0 134 38 2 170 624 -44 1 <C 12 0 134 38 2 171 625 -43 3 C> 12 0 134 38 2 172 627 -41 33 C> 0 134 38 2 173 628 -40 34 B> 134 38 2 174 629 -41 34 <B 0 133 38 2 175 633 -45 <B 14 0 133 38 2 176 634 -46 <A 2 14 0 133 38 2 177 635 -45 1 B> 2 14 0 133 38 2 178 636 -46 1 <C 15 0 133 38 2 179 637 -45 3 C> 15 0 133 38 2 180 642 -40 36 C> 0 133 38 2 181 643 -39 37 B> 133 38 2 182 644 -40 37 <B 0 132 38 2 183 651 -47 <B 17 0 132 38 2 184 652 -48 <A 2 17 0 132 38 2 185 653 -47 1 B> 2 17 0 132 38 2 186 654 -48 1 <C 18 0 132 38 2 187 655 -47 3 C> 18 0 132 38 2 188 663 -39 39 C> 0 132 38 2 189 664 -38 310 B> 132 38 2 190 665 -39 310 <B 0 131 38 2 191 675 -49 <B 110 0 131 38 2 192 676 -50 <A 2 110 0 131 38 2 193 677 -49 1 B> 2 110 0 131 38 2 194 678 -50 1 <C 111 0 131 38 2 195 679 -49 3 C> 111 0 131 38 2 196 690 -38 312 C> 0 131 38 2 197 691 -37 313 B> 131 38 2 198 692 -38 313 <B 0 130 38 2 199 705 -51 <B 113 0 130 38 2 200 706 -52 <A 2 113 0 130 38 2 Lines: 201 Top steps: 200 Macro steps: 200 Basic steps: 706 Tape index: -52 nonzeros: 53 log10(nonzeros): 1.724 log10(steps ): 2.849
Input to awk program: gohalt 1 nbs 4 T 3-state 4-symbol #i (T.J. & S. Ligocki) : >3.7x10^6518 >5.2x10^13036 C This is the currently best known 3x4 TM 5T 1RB 1RA 2LB 3LA 2LA 0LB 1LC 1LB 3RB 3RC 1RH 1LC L 60 M 201 pref sim machv Lig34_i just simple machv Lig34_i-r with repetitions reduced machv Lig34_i-1 with tape symbol exponents machv Lig34_i-m as 1-macro machine machv Lig34_i-a as 1-macro machine with pure additive config-TRs iam Lig34_i-m mtype 1 mmtyp 1 r 1 H 1 mac 0 E 2 sympr HM 1 date Tue Jul 6 22:13:57 CEST 2010 edate Tue Jul 6 22:13:57 CEST 2010 bnspeed 1 short 7Start: Tue Jul 6 22:13:57 CEST 2010
Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;