3-state 4-symbol #i (T.J. & S. Ligocki)

Comment: This TM produces >3.7x10^6518 nonzeros in >5.2x10^13036 steps.
Comment: This is the currently best known 3x4 TM

State on
0
on
1
on
2
on
3
on 0 on 1 on 2 on 3
Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 1RA 2LB 3LA 1 right B 1 right A 2 left B 3 left A
B 2LA 0LB 1LC 1LB 2 left A 0 left B 1 left C 1 left B
C 3RB 3RC 1RH 1LC 3 right B 3 right C 1 right H 1 left C
Transition table
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

Pushing initial machine.
Pushing macro factor 1.

Steps BasSteps BasTpos  Tape contents
    0        0       0  A>
    1        1       1  1 B>
    2        2       0  1 <A 2
    3        3       1  1 A> 2
    4        4       0  1 <B 2
    5        5      -1  <B 0 2
    6        6      -2  <A 2 0 2
    7        7      -1  1 B> 2 0 2
    8        8      -2  1 <C 1 0 2
    9        9      -1  3 C> 1 0 2
   10       10       0  32 C> 0 2
   11       11       1  33 B> 2
   12       12       0  33 <C 1
   13       15      -3  <C 14
   14       16      -2  3 B> 14
   15       17      -3  3 <B 0 13
   16       18      -4  <B 1 0 13
   17       19      -5  <A 2 1 0 13
   18       20      -4  1 B> 2 1 0 13
   19       21      -5  1 <C 12 0 13
   20       22      -4  3 C> 12 0 13
   21       24      -2  33 C> 0 13
   22       25      -1  34 B> 13
   23       26      -2  34 <B 0 12
   24       30      -6  <B 14 0 12
   25       31      -7  <A 2 14 0 12
   26       32      -6  1 B> 2 14 0 12
   27       33      -7  1 <C 15 0 12
   28       34      -6  3 C> 15 0 12
   29       39      -1  36 C> 0 12
   30       40       0  37 B> 12
   31       41      -1  37 <B 0 1
   32       48      -8  <B 17 0 1
   33       49      -9  <A 2 17 0 1
   34       50      -8  1 B> 2 17 0 1
   35       51      -9  1 <C 18 0 1
   36       52      -8  3 C> 18 0 1
   37       60       0  39 C> 0 1
   38       61       1  310 B> 1
   39       62       0  310 <B
   40       72     -10  <B 110
   41       73     -11  <A 2 110
   42       74     -10  1 B> 2 110
   43       75     -11  1 <C 111
   44       76     -10  3 C> 111
   45       87       1  312 C>
   46       88       2  313 B>
   47       89       1  313 <A 2
   48      102     -12  <A 313 2
   49      103     -11  1 B> 313 2
   50      104     -12  1 <B 1 312 2
   51      105     -13  <B 0 1 312 2
   52      106     -14  <A 2 0 1 312 2
   53      107     -13  1 B> 2 0 1 312 2
   54      108     -14  1 <C 1 0 1 312 2
   55      109     -13  3 C> 1 0 1 312 2
   56      110     -12  32 C> 0 1 312 2
   57      111     -11  33 B> 1 312 2
   58      112     -12  33 <B 0 312 2
   59      115     -15  <B 13 0 312 2
   60      116     -16  <A 2 13 0 312 2
   61      117     -15  1 B> 2 13 0 312 2
   62      118     -16  1 <C 14 0 312 2
   63      119     -15  3 C> 14 0 312 2
   64      123     -11  35 C> 0 312 2
   65      124     -10  36 B> 312 2
   66      125     -11  36 <B 1 311 2
   67      131     -17  <B 17 311 2
   68      132     -18  <A 2 17 311 2
   69      133     -17  1 B> 2 17 311 2
   70      134     -18  1 <C 18 311 2
   71      135     -17  3 C> 18 311 2
   72      143      -9  39 C> 311 2
   73      144     -10  39 <C 1 310 2
   74      153     -19  <C 110 310 2
   75      154     -18  3 B> 110 310 2
   76      155     -19  3 <B 0 19 310 2
   77      156     -20  <B 1 0 19 310 2
   78      157     -21  <A 2 1 0 19 310 2
   79      158     -20  1 B> 2 1 0 19 310 2
   80      159     -21  1 <C 12 0 19 310 2
   81      160     -20  3 C> 12 0 19 310 2
   82      162     -18  33 C> 0 19 310 2
   83      163     -17  34 B> 19 310 2
   84      164     -18  34 <B 0 18 310 2
   85      168     -22  <B 14 0 18 310 2
   86      169     -23  <A 2 14 0 18 310 2
   87      170     -22  1 B> 2 14 0 18 310 2
   88      171     -23  1 <C 15 0 18 310 2
   89      172     -22  3 C> 15 0 18 310 2
   90      177     -17  36 C> 0 18 310 2
   91      178     -16  37 B> 18 310 2
   92      179     -17  37 <B 0 17 310 2
   93      186     -24  <B 17 0 17 310 2
   94      187     -25  <A 2 17 0 17 310 2
   95      188     -24  1 B> 2 17 0 17 310 2
   96      189     -25  1 <C 18 0 17 310 2
   97      190     -24  3 C> 18 0 17 310 2
   98      198     -16  39 C> 0 17 310 2
   99      199     -15  310 B> 17 310 2
  100      200     -16  310 <B 0 16 310 2
  101      210     -26  <B 110 0 16 310 2
  102      211     -27  <A 2 110 0 16 310 2
  103      212     -26  1 B> 2 110 0 16 310 2
  104      213     -27  1 <C 111 0 16 310 2
  105      214     -26  3 C> 111 0 16 310 2
  106      225     -15  312 C> 0 16 310 2
  107      226     -14  313 B> 16 310 2
  108      227     -15  313 <B 0 15 310 2
  109      240     -28  <B 113 0 15 310 2
  110      241     -29  <A 2 113 0 15 310 2
  111      242     -28  1 B> 2 113 0 15 310 2
  112      243     -29  1 <C 114 0 15 310 2
  113      244     -28  3 C> 114 0 15 310 2
  114      258     -14  315 C> 0 15 310 2
  115      259     -13  316 B> 15 310 2
  116      260     -14  316 <B 0 14 310 2
  117      276     -30  <B 116 0 14 310 2
  118      277     -31  <A 2 116 0 14 310 2
  119      278     -30  1 B> 2 116 0 14 310 2
  120      279     -31  1 <C 117 0 14 310 2
  121      280     -30  3 C> 117 0 14 310 2
  122      297     -13  318 C> 0 14 310 2
  123      298     -12  319 B> 14 310 2
  124      299     -13  319 <B 0 13 310 2
  125      318     -32  <B 119 0 13 310 2
  126      319     -33  <A 2 119 0 13 310 2
  127      320     -32  1 B> 2 119 0 13 310 2
  128      321     -33  1 <C 120 0 13 310 2
  129      322     -32  3 C> 120 0 13 310 2
  130      342     -12  321 C> 0 13 310 2
  131      343     -11  322 B> 13 310 2
  132      344     -12  322 <B 0 12 310 2
  133      366     -34  <B 122 0 12 310 2
  134      367     -35  <A 2 122 0 12 310 2
  135      368     -34  1 B> 2 122 0 12 310 2
  136      369     -35  1 <C 123 0 12 310 2
  137      370     -34  3 C> 123 0 12 310 2
  138      393     -11  324 C> 0 12 310 2
  139      394     -10  325 B> 12 310 2
  140      395     -11  325 <B 0 1 310 2
  141      420     -36  <B 125 0 1 310 2
  142      421     -37  <A 2 125 0 1 310 2
  143      422     -36  1 B> 2 125 0 1 310 2
  144      423     -37  1 <C 126 0 1 310 2
  145      424     -36  3 C> 126 0 1 310 2
  146      450     -10  327 C> 0 1 310 2
  147      451      -9  328 B> 1 310 2
  148      452     -10  328 <B 0 310 2
  149      480     -38  <B 128 0 310 2
  150      481     -39  <A 2 128 0 310 2
  151      482     -38  1 B> 2 128 0 310 2
  152      483     -39  1 <C 129 0 310 2
  153      484     -38  3 C> 129 0 310 2
  154      513      -9  330 C> 0 310 2
  155      514      -8  331 B> 310 2
  156      515      -9  331 <B 1 39 2
  157      546     -40  <B 132 39 2
  158      547     -41  <A 2 132 39 2
  159      548     -40  1 B> 2 132 39 2
  160      549     -41  1 <C 133 39 2
  161      550     -40  3 C> 133 39 2
  162      583      -7  334 C> 39 2
  163      584      -8  334 <C 1 38 2
  164      618     -42  <C 135 38 2
  165      619     -41  3 B> 135 38 2
  166      620     -42  3 <B 0 134 38 2
  167      621     -43  <B 1 0 134 38 2
  168      622     -44  <A 2 1 0 134 38 2
  169      623     -43  1 B> 2 1 0 134 38 2
  170      624     -44  1 <C 12 0 134 38 2
  171      625     -43  3 C> 12 0 134 38 2
  172      627     -41  33 C> 0 134 38 2
  173      628     -40  34 B> 134 38 2
  174      629     -41  34 <B 0 133 38 2
  175      633     -45  <B 14 0 133 38 2
  176      634     -46  <A 2 14 0 133 38 2
  177      635     -45  1 B> 2 14 0 133 38 2
  178      636     -46  1 <C 15 0 133 38 2
  179      637     -45  3 C> 15 0 133 38 2
  180      642     -40  36 C> 0 133 38 2
  181      643     -39  37 B> 133 38 2
  182      644     -40  37 <B 0 132 38 2
  183      651     -47  <B 17 0 132 38 2
  184      652     -48  <A 2 17 0 132 38 2
  185      653     -47  1 B> 2 17 0 132 38 2
  186      654     -48  1 <C 18 0 132 38 2
  187      655     -47  3 C> 18 0 132 38 2
  188      663     -39  39 C> 0 132 38 2
  189      664     -38  310 B> 132 38 2
  190      665     -39  310 <B 0 131 38 2
  191      675     -49  <B 110 0 131 38 2
  192      676     -50  <A 2 110 0 131 38 2
  193      677     -49  1 B> 2 110 0 131 38 2
  194      678     -50  1 <C 111 0 131 38 2
  195      679     -49  3 C> 111 0 131 38 2
  196      690     -38  312 C> 0 131 38 2
  197      691     -37  313 B> 131 38 2
  198      692     -38  313 <B 0 130 38 2
  199      705     -51  <B 113 0 130 38 2
  200      706     -52  <A 2 113 0 130 38 2

Lines:       201
Top steps:   200
Macro steps: 200
Basic steps: 706
Tape index:  -52
nonzeros:    53
log10(nonzeros):    1.724
log10(steps   ):    2.849

The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Input to awk program:
    gohalt 1
    nbs 4
    T 3-state 4-symbol #i (T.J. & S. Ligocki)
    : >3.7x10^6518 >5.2x10^13036
    C This is the currently best known 3x4 TM
    5T  1RB 1RA 2LB 3LA  2LA 0LB 1LC 1LB  3RB 3RC 1RH 1LC
    L 60
    M	201
    pref	sim
    machv Lig34_i  	just simple
    machv Lig34_i-r	with repetitions reduced
    machv Lig34_i-1	with tape symbol exponents
    machv Lig34_i-m	as 1-macro machine
    machv Lig34_i-a	as 1-macro machine with pure additive config-TRs
    iam	Lig34_i-m
    mtype	1
    mmtyp	1
    r	1
    H	1
    mac	0
    E	2
    sympr	
    HM	1
    date	Tue Jul  6 22:13:57 CEST 2010
    edate	Tue Jul  6 22:13:57 CEST 2010
    bnspeed	1
    short	7

Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:13:57 CEST 2010
Ready: Tue Jul 6 22:13:57 CEST 2010