Comment: This TM produces >3.7x10^6518 nonzeros in >5.2x10^13036 steps. Comment: This is the currently best known 3x4 TM Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
| A | 1RB | 1RA | 2LB | 3LA | 1 | right | B | 1 | right | A | 2 | left | B | 3 | left | A |
| B | 2LA | 0LB | 1LC | 1LB | 2 | left | A | 0 | left | B | 1 | left | C | 1 | left | B |
| C | 3RB | 3RC | 1RH | 1LC | 3 | right | B | 3 | right | C | 1 | right | H | 1 | left | C |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <A 2
3 1 1 A> 2
4 0 1 <B 2
5 -1 <B 0 2
6 -2 <A 2 0 2
7 -1 1 B> 2 0 2
8 -2 1 <C 1 0 2
9 -1 3 C> 1 0 2
10 0 3 3 C> 0 2
11 1 33 B> 2
12 0 33 <C 1
+ 15 -3 <C 14
16 -2 3 B> 14
17 -3 3 <B 0 13
18 -4 <B 1 0 13
19 -5 <A 2 1 0 13
20 -4 1 B> 2 1 0 13
21 -5 1 <C 1 1 0 13
22 -4 3 C> 1 1 0 13
+ 24 -2 33 C> 0 13
25 -1 34 B> 13
26 -2 34 <B 0 1 1
+ 30 -6 <B 14 0 1 1
31 -7 <A 2 14 0 1 1
32 -6 1 B> 2 14 0 1 1
33 -7 1 <C 15 0 1 1
34 -6 3 C> 15 0 1 1
+ 39 -1 36 C> 0 1 1
40 0 37 B> 1 1
41 -1 37 <B 0 1
+ 48 -8 <B 17 0 1
49 -9 <A 2 17 0 1
50 -8 1 B> 2 17 0 1
51 -9 1 <C 18 0 1
52 -8 3 C> 18 0 1
+ 60 0 39 C> 0 1
61 1 310 B> 1
62 0 310 <B
+ 72 -10 <B 110
73 -11 <A 2 110
74 -10 1 B> 2 110
75 -11 1 <C 111
76 -10 3 C> 111
+ 87 1 312 C>
88 2 313 B>
89 1 313 <A 2
+ 102 -12 <A 313 2
103 -11 1 B> 313 2
104 -12 1 <B 1 312 2
105 -13 <B 0 1 312 2
106 -14 <A 2 0 1 312 2
107 -13 1 B> 2 0 1 312 2
108 -14 1 <C 1 0 1 312 2
109 -13 3 C> 1 0 1 312 2
110 -12 3 3 C> 0 1 312 2
111 -11 33 B> 1 312 2
112 -12 33 <B 0 312 2
+ 115 -15 <B 13 0 312 2
116 -16 <A 2 13 0 312 2
117 -15 1 B> 2 13 0 312 2
118 -16 1 <C 14 0 312 2
119 -15 3 C> 14 0 312 2
+ 123 -11 35 C> 0 312 2
124 -10 36 B> 312 2
125 -11 36 <B 1 311 2
+ 131 -17 <B 17 311 2
132 -18 <A 2 17 311 2
133 -17 1 B> 2 17 311 2
134 -18 1 <C 18 311 2
135 -17 3 C> 18 311 2
+ 143 -9 39 C> 311 2
144 -10 39 <C 1 310 2
+ 153 -19 <C 110 310 2
154 -18 3 B> 110 310 2
155 -19 3 <B 0 19 310 2
156 -20 <B 1 0 19 310 2
157 -21 <A 2 1 0 19 310 2
158 -20 1 B> 2 1 0 19 310 2
159 -21 1 <C 1 1 0 19 310 2
160 -20 3 C> 1 1 0 19 310 2
+ 162 -18 33 C> 0 19 310 2
163 -17 34 B> 19 310 2
164 -18 34 <B 0 18 310 2
+ 168 -22 <B 14 0 18 310 2
169 -23 <A 2 14 0 18 310 2
170 -22 1 B> 2 14 0 18 310 2
171 -23 1 <C 15 0 18 310 2
172 -22 3 C> 15 0 18 310 2
+ 177 -17 36 C> 0 18 310 2
178 -16 37 B> 18 310 2
179 -17 37 <B 0 17 310 2
+ 186 -24 <B 17 0 17 310 2
187 -25 <A 2 17 0 17 310 2
188 -24 1 B> 2 17 0 17 310 2
189 -25 1 <C 18 0 17 310 2
190 -24 3 C> 18 0 17 310 2
+ 198 -16 39 C> 0 17 310 2
199 -15 310 B> 17 310 2
200 -16 310 <B 0 16 310 2
+ 210 -26 <B 110 0 16 310 2
211 -27 <A 2 110 0 16 310 2
212 -26 1 B> 2 110 0 16 310 2
213 -27 1 <C 111 0 16 310 2
214 -26 3 C> 111 0 16 310 2
+ 225 -15 312 C> 0 16 310 2
226 -14 313 B> 16 310 2
227 -15 313 <B 0 15 310 2
+ 240 -28 <B 113 0 15 310 2
241 -29 <A 2 113 0 15 310 2
242 -28 1 B> 2 113 0 15 310 2
243 -29 1 <C 114 0 15 310 2
244 -28 3 C> 114 0 15 310 2
+ 258 -14 315 C> 0 15 310 2
259 -13 316 B> 15 310 2
260 -14 316 <B 0 14 310 2
+ 276 -30 <B 116 0 14 310 2
277 -31 <A 2 116 0 14 310 2
278 -30 1 B> 2 116 0 14 310 2
279 -31 1 <C 117 0 14 310 2
280 -30 3 C> 117 0 14 310 2
+ 297 -13 318 C> 0 14 310 2
298 -12 319 B> 14 310 2
299 -13 319 <B 0 13 310 2
+ 318 -32 <B 119 0 13 310 2
319 -33 <A 2 119 0 13 310 2
320 -32 1 B> 2 119 0 13 310 2
321 -33 1 <C 120 0 13 310 2
322 -32 3 C> 120 0 13 310 2
+ 342 -12 321 C> 0 13 310 2
343 -11 322 B> 13 310 2
344 -12 322 <B 0 1 1 310 2
+ 366 -34 <B 122 0 1 1 310 2
367 -35 <A 2 122 0 1 1 310 2
368 -34 1 B> 2 122 0 1 1 310 2
369 -35 1 <C 123 0 1 1 310 2
370 -34 3 C> 123 0 1 1 310 2
+ 393 -11 324 C> 0 1 1 310 2
394 -10 325 B> 1 1 310 2
395 -11 325 <B 0 1 310 2
+ 420 -36 <B 125 0 1 310 2
421 -37 <A 2 125 0 1 310 2
422 -36 1 B> 2 125 0 1 310 2
423 -37 1 <C 126 0 1 310 2
424 -36 3 C> 126 0 1 310 2
+ 450 -10 327 C> 0 1 310 2
451 -9 328 B> 1 310 2
452 -10 328 <B 0 310 2
+ 480 -38 <B 128 0 310 2
481 -39 <A 2 128 0 310 2
482 -38 1 B> 2 128 0 310 2
483 -39 1 <C 129 0 310 2
484 -38 3 C> 129 0 310 2
+ 513 -9 330 C> 0 310 2
514 -8 331 B> 310 2
515 -9 331 <B 1 39 2
+ 546 -40 <B 132 39 2
547 -41 <A 2 132 39 2
548 -40 1 B> 2 132 39 2
549 -41 1 <C 133 39 2
550 -40 3 C> 133 39 2
+ 583 -7 334 C> 39 2
584 -8 334 <C 1 38 2
+ 618 -42 <C 135 38 2
619 -41 3 B> 135 38 2
620 -42 3 <B 0 134 38 2
621 -43 <B 1 0 134 38 2
622 -44 <A 2 1 0 134 38 2
623 -43 1 B> 2 1 0 134 38 2
624 -44 1 <C 1 1 0 134 38 2
625 -43 3 C> 1 1 0 134 38 2
+ 627 -41 33 C> 0 134 38 2
628 -40 34 B> 134 38 2
629 -41 34 <B 0 133 38 2
+ 633 -45 <B 14 0 133 38 2
634 -46 <A 2 14 0 133 38 2
635 -45 1 B> 2 14 0 133 38 2
636 -46 1 <C 15 0 133 38 2
637 -45 3 C> 15 0 133 38 2
+ 642 -40 36 C> 0 133 38 2
643 -39 37 B> 133 38 2
644 -40 37 <B 0 132 38 2
+ 651 -47 <B 17 0 132 38 2
652 -48 <A 2 17 0 132 38 2
653 -47 1 B> 2 17 0 132 38 2
654 -48 1 <C 18 0 132 38 2
655 -47 3 C> 18 0 132 38 2
+ 663 -39 39 C> 0 132 38 2
664 -38 310 B> 132 38 2
665 -39 310 <B 0 131 38 2
+ 675 -49 <B 110 0 131 38 2
676 -50 <A 2 110 0 131 38 2
677 -49 1 B> 2 110 0 131 38 2
678 -50 1 <C 111 0 131 38 2
679 -49 3 C> 111 0 131 38 2
+ 690 -38 312 C> 0 131 38 2
691 -37 313 B> 131 38 2
692 -38 313 <B 0 130 38 2
+ 705 -51 <B 113 0 130 38 2
706 -52 <A 2 113 0 130 38 2
After 706 steps (201 lines): state = A.
Produced 53 nonzeros.
Tape index -52, scanned [-51 .. 2].
| State | Count | Execution count | First in step | ||||||
|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
| A | 40 | 25 | 1 | 1 | 13 | 0 | 2 | 3 | 89 |
| B | 317 | 26 | 22 | 24 | 245 | 1 | 4 | 7 | 17 |
| C | 349 | 24 | 277 | 48 | 10 | 8 | 12 | ||