3-state 4-symbol #i (T.J. & S. Ligocki)

Comment: This TM produces >3.7x10^6518 nonzeros in >5.2x10^13036 steps.
Comment: This is the currently best known 3x4 TM

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on 0 on 1 on 2 on 3
Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 1RA 2LB 3LA 1 right B 1 right A 2 left B 3 left A
B 2LA 0LB 1LC 1LB 2 left A 0 left B 1 left C 1 left B
C 3RB 3RC 1RH 1LC 3 right B 3 right C 1 right H 1 left C
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     0  1 <A 2
     3     1  1 A> 2
     4     0  1 <B 2
     5    -1  <B 0 2
     6    -2  <A 2 0 2
     7    -1  1 B> 2 0 2
     8    -2  1 <C 1 0 2
     9    -1  3 C> 1 0 2
    10     0  3 3 C> 0 2
    11     1  33 B> 2
    12     0  33 <C 1
+   15    -3  <C 14
    16    -2  3 B> 14
    17    -3  3 <B 0 13
    18    -4  <B 1 0 13
    19    -5  <A 2 1 0 13
    20    -4  1 B> 2 1 0 13
    21    -5  1 <C 1 1 0 13
    22    -4  3 C> 1 1 0 13
+   24    -2  33 C> 0 13
    25    -1  34 B> 13
    26    -2  34 <B 0 1 1
+   30    -6  <B 14 0 1 1
    31    -7  <A 2 14 0 1 1
    32    -6  1 B> 2 14 0 1 1
    33    -7  1 <C 15 0 1 1
    34    -6  3 C> 15 0 1 1
+   39    -1  36 C> 0 1 1
    40     0  37 B> 1 1
    41    -1  37 <B 0 1
+   48    -8  <B 17 0 1
    49    -9  <A 2 17 0 1
    50    -8  1 B> 2 17 0 1
    51    -9  1 <C 18 0 1
    52    -8  3 C> 18 0 1
+   60     0  39 C> 0 1
    61     1  310 B> 1
    62     0  310 <B
+   72   -10  <B 110
    73   -11  <A 2 110
    74   -10  1 B> 2 110
    75   -11  1 <C 111
    76   -10  3 C> 111
+   87     1  312 C>
    88     2  313 B>
    89     1  313 <A 2
+  102   -12  <A 313 2
   103   -11  1 B> 313 2
   104   -12  1 <B 1 312 2
   105   -13  <B 0 1 312 2
   106   -14  <A 2 0 1 312 2
   107   -13  1 B> 2 0 1 312 2
   108   -14  1 <C 1 0 1 312 2
   109   -13  3 C> 1 0 1 312 2
   110   -12  3 3 C> 0 1 312 2
   111   -11  33 B> 1 312 2
   112   -12  33 <B 0 312 2
+  115   -15  <B 13 0 312 2
   116   -16  <A 2 13 0 312 2
   117   -15  1 B> 2 13 0 312 2
   118   -16  1 <C 14 0 312 2
   119   -15  3 C> 14 0 312 2
+  123   -11  35 C> 0 312 2
   124   -10  36 B> 312 2
   125   -11  36 <B 1 311 2
+  131   -17  <B 17 311 2
   132   -18  <A 2 17 311 2
   133   -17  1 B> 2 17 311 2
   134   -18  1 <C 18 311 2
   135   -17  3 C> 18 311 2
+  143    -9  39 C> 311 2
   144   -10  39 <C 1 310 2
+  153   -19  <C 110 310 2
   154   -18  3 B> 110 310 2
   155   -19  3 <B 0 19 310 2
   156   -20  <B 1 0 19 310 2
   157   -21  <A 2 1 0 19 310 2
   158   -20  1 B> 2 1 0 19 310 2
   159   -21  1 <C 1 1 0 19 310 2
   160   -20  3 C> 1 1 0 19 310 2
+  162   -18  33 C> 0 19 310 2
   163   -17  34 B> 19 310 2
   164   -18  34 <B 0 18 310 2
+  168   -22  <B 14 0 18 310 2
   169   -23  <A 2 14 0 18 310 2
   170   -22  1 B> 2 14 0 18 310 2
   171   -23  1 <C 15 0 18 310 2
   172   -22  3 C> 15 0 18 310 2
+  177   -17  36 C> 0 18 310 2
   178   -16  37 B> 18 310 2
   179   -17  37 <B 0 17 310 2
+  186   -24  <B 17 0 17 310 2
   187   -25  <A 2 17 0 17 310 2
   188   -24  1 B> 2 17 0 17 310 2
   189   -25  1 <C 18 0 17 310 2
   190   -24  3 C> 18 0 17 310 2
+  198   -16  39 C> 0 17 310 2
   199   -15  310 B> 17 310 2
   200   -16  310 <B 0 16 310 2
+  210   -26  <B 110 0 16 310 2
   211   -27  <A 2 110 0 16 310 2
   212   -26  1 B> 2 110 0 16 310 2
   213   -27  1 <C 111 0 16 310 2
   214   -26  3 C> 111 0 16 310 2
+  225   -15  312 C> 0 16 310 2
   226   -14  313 B> 16 310 2
   227   -15  313 <B 0 15 310 2
+  240   -28  <B 113 0 15 310 2
   241   -29  <A 2 113 0 15 310 2
   242   -28  1 B> 2 113 0 15 310 2
   243   -29  1 <C 114 0 15 310 2
   244   -28  3 C> 114 0 15 310 2
+  258   -14  315 C> 0 15 310 2
   259   -13  316 B> 15 310 2
   260   -14  316 <B 0 14 310 2
+  276   -30  <B 116 0 14 310 2
   277   -31  <A 2 116 0 14 310 2
   278   -30  1 B> 2 116 0 14 310 2
   279   -31  1 <C 117 0 14 310 2
   280   -30  3 C> 117 0 14 310 2
+  297   -13  318 C> 0 14 310 2
   298   -12  319 B> 14 310 2
   299   -13  319 <B 0 13 310 2
+  318   -32  <B 119 0 13 310 2
   319   -33  <A 2 119 0 13 310 2
   320   -32  1 B> 2 119 0 13 310 2
   321   -33  1 <C 120 0 13 310 2
   322   -32  3 C> 120 0 13 310 2
+  342   -12  321 C> 0 13 310 2
   343   -11  322 B> 13 310 2
   344   -12  322 <B 0 1 1 310 2
+  366   -34  <B 122 0 1 1 310 2
   367   -35  <A 2 122 0 1 1 310 2
   368   -34  1 B> 2 122 0 1 1 310 2
   369   -35  1 <C 123 0 1 1 310 2
   370   -34  3 C> 123 0 1 1 310 2
+  393   -11  324 C> 0 1 1 310 2
   394   -10  325 B> 1 1 310 2
   395   -11  325 <B 0 1 310 2
+  420   -36  <B 125 0 1 310 2
   421   -37  <A 2 125 0 1 310 2
   422   -36  1 B> 2 125 0 1 310 2
   423   -37  1 <C 126 0 1 310 2
   424   -36  3 C> 126 0 1 310 2
+  450   -10  327 C> 0 1 310 2
   451    -9  328 B> 1 310 2
   452   -10  328 <B 0 310 2
+  480   -38  <B 128 0 310 2
   481   -39  <A 2 128 0 310 2
   482   -38  1 B> 2 128 0 310 2
   483   -39  1 <C 129 0 310 2
   484   -38  3 C> 129 0 310 2
+  513    -9  330 C> 0 310 2
   514    -8  331 B> 310 2
   515    -9  331 <B 1 39 2
+  546   -40  <B 132 39 2
   547   -41  <A 2 132 39 2
   548   -40  1 B> 2 132 39 2
   549   -41  1 <C 133 39 2
   550   -40  3 C> 133 39 2
+  583    -7  334 C> 39 2
   584    -8  334 <C 1 38 2
+  618   -42  <C 135 38 2
   619   -41  3 B> 135 38 2
   620   -42  3 <B 0 134 38 2
   621   -43  <B 1 0 134 38 2
   622   -44  <A 2 1 0 134 38 2
   623   -43  1 B> 2 1 0 134 38 2
   624   -44  1 <C 1 1 0 134 38 2
   625   -43  3 C> 1 1 0 134 38 2
+  627   -41  33 C> 0 134 38 2
   628   -40  34 B> 134 38 2
   629   -41  34 <B 0 133 38 2
+  633   -45  <B 14 0 133 38 2
   634   -46  <A 2 14 0 133 38 2
   635   -45  1 B> 2 14 0 133 38 2
   636   -46  1 <C 15 0 133 38 2
   637   -45  3 C> 15 0 133 38 2
+  642   -40  36 C> 0 133 38 2
   643   -39  37 B> 133 38 2
   644   -40  37 <B 0 132 38 2
+  651   -47  <B 17 0 132 38 2
   652   -48  <A 2 17 0 132 38 2
   653   -47  1 B> 2 17 0 132 38 2
   654   -48  1 <C 18 0 132 38 2
   655   -47  3 C> 18 0 132 38 2
+  663   -39  39 C> 0 132 38 2
   664   -38  310 B> 132 38 2
   665   -39  310 <B 0 131 38 2
+  675   -49  <B 110 0 131 38 2
   676   -50  <A 2 110 0 131 38 2
   677   -49  1 B> 2 110 0 131 38 2
   678   -50  1 <C 111 0 131 38 2
   679   -49  3 C> 111 0 131 38 2
+  690   -38  312 C> 0 131 38 2
   691   -37  313 B> 131 38 2
   692   -38  313 <B 0 130 38 2
+  705   -51  <B 113 0 130 38 2
   706   -52  <A 2 113 0 130 38 2

After 706 steps (201 lines): state = A.
Produced     53 nonzeros.
Tape index -52, scanned [-51 .. 2].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 0 on 1 on 2 on 3
A 40 25 1 1 13 0 2 3 89
B 317 26 22 24 245 1 4 7 17
C 349 24 277   48 10 8   12
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:13:57 CEST 2010