Comment: This TM produces >3.7x10^6518 nonzeros in >5.2x10^13036 steps. Comment: This is the currently best known 3x4 TM Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
A | 1RB | 1RA | 2LB | 3LA | 1 | right | B | 1 | right | A | 2 | left | B | 3 | left | A |
B | 2LA | 0LB | 1LC | 1LB | 2 | left | A | 0 | left | B | 1 | left | C | 1 | left | B |
C | 3RB | 3RC | 1RH | 1LC | 3 | right | B | 3 | right | C | 1 | right | H | 1 | left | C |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <A 2 3 1 1 A> 2 4 0 1 <B 2 5 -1 <B 0 2 6 -2 <A 2 0 2 7 -1 1 B> 2 0 2 8 -2 1 <C 1 0 2 9 -1 3 C> 1 0 2 10 0 3 3 C> 0 2 11 1 33 B> 2 12 0 33 <C 1 + 15 -3 <C 14 16 -2 3 B> 14 17 -3 3 <B 0 13 18 -4 <B 1 0 13 19 -5 <A 2 1 0 13 20 -4 1 B> 2 1 0 13 21 -5 1 <C 1 1 0 13 22 -4 3 C> 1 1 0 13 + 24 -2 33 C> 0 13 25 -1 34 B> 13 26 -2 34 <B 0 1 1 + 30 -6 <B 14 0 1 1 31 -7 <A 2 14 0 1 1 32 -6 1 B> 2 14 0 1 1 33 -7 1 <C 15 0 1 1 34 -6 3 C> 15 0 1 1 + 39 -1 36 C> 0 1 1 40 0 37 B> 1 1 41 -1 37 <B 0 1 + 48 -8 <B 17 0 1 49 -9 <A 2 17 0 1 50 -8 1 B> 2 17 0 1 51 -9 1 <C 18 0 1 52 -8 3 C> 18 0 1 + 60 0 39 C> 0 1 61 1 310 B> 1 62 0 310 <B + 72 -10 <B 110 73 -11 <A 2 110 74 -10 1 B> 2 110 75 -11 1 <C 111 76 -10 3 C> 111 + 87 1 312 C> 88 2 313 B> 89 1 313 <A 2 + 102 -12 <A 313 2 103 -11 1 B> 313 2 104 -12 1 <B 1 312 2 105 -13 <B 0 1 312 2 106 -14 <A 2 0 1 312 2 107 -13 1 B> 2 0 1 312 2 108 -14 1 <C 1 0 1 312 2 109 -13 3 C> 1 0 1 312 2 110 -12 3 3 C> 0 1 312 2 111 -11 33 B> 1 312 2 112 -12 33 <B 0 312 2 + 115 -15 <B 13 0 312 2 116 -16 <A 2 13 0 312 2 117 -15 1 B> 2 13 0 312 2 118 -16 1 <C 14 0 312 2 119 -15 3 C> 14 0 312 2 + 123 -11 35 C> 0 312 2 124 -10 36 B> 312 2 125 -11 36 <B 1 311 2 + 131 -17 <B 17 311 2 132 -18 <A 2 17 311 2 133 -17 1 B> 2 17 311 2 134 -18 1 <C 18 311 2 135 -17 3 C> 18 311 2 + 143 -9 39 C> 311 2 144 -10 39 <C 1 310 2 + 153 -19 <C 110 310 2 154 -18 3 B> 110 310 2 155 -19 3 <B 0 19 310 2 156 -20 <B 1 0 19 310 2 157 -21 <A 2 1 0 19 310 2 158 -20 1 B> 2 1 0 19 310 2 159 -21 1 <C 1 1 0 19 310 2 160 -20 3 C> 1 1 0 19 310 2 + 162 -18 33 C> 0 19 310 2 163 -17 34 B> 19 310 2 164 -18 34 <B 0 18 310 2 + 168 -22 <B 14 0 18 310 2 169 -23 <A 2 14 0 18 310 2 170 -22 1 B> 2 14 0 18 310 2 171 -23 1 <C 15 0 18 310 2 172 -22 3 C> 15 0 18 310 2 + 177 -17 36 C> 0 18 310 2 178 -16 37 B> 18 310 2 179 -17 37 <B 0 17 310 2 + 186 -24 <B 17 0 17 310 2 187 -25 <A 2 17 0 17 310 2 188 -24 1 B> 2 17 0 17 310 2 189 -25 1 <C 18 0 17 310 2 190 -24 3 C> 18 0 17 310 2 + 198 -16 39 C> 0 17 310 2 199 -15 310 B> 17 310 2 200 -16 310 <B 0 16 310 2 + 210 -26 <B 110 0 16 310 2 211 -27 <A 2 110 0 16 310 2 212 -26 1 B> 2 110 0 16 310 2 213 -27 1 <C 111 0 16 310 2 214 -26 3 C> 111 0 16 310 2 + 225 -15 312 C> 0 16 310 2 226 -14 313 B> 16 310 2 227 -15 313 <B 0 15 310 2 + 240 -28 <B 113 0 15 310 2 241 -29 <A 2 113 0 15 310 2 242 -28 1 B> 2 113 0 15 310 2 243 -29 1 <C 114 0 15 310 2 244 -28 3 C> 114 0 15 310 2 + 258 -14 315 C> 0 15 310 2 259 -13 316 B> 15 310 2 260 -14 316 <B 0 14 310 2 + 276 -30 <B 116 0 14 310 2 277 -31 <A 2 116 0 14 310 2 278 -30 1 B> 2 116 0 14 310 2 279 -31 1 <C 117 0 14 310 2 280 -30 3 C> 117 0 14 310 2 + 297 -13 318 C> 0 14 310 2 298 -12 319 B> 14 310 2 299 -13 319 <B 0 13 310 2 + 318 -32 <B 119 0 13 310 2 319 -33 <A 2 119 0 13 310 2 320 -32 1 B> 2 119 0 13 310 2 321 -33 1 <C 120 0 13 310 2 322 -32 3 C> 120 0 13 310 2 + 342 -12 321 C> 0 13 310 2 343 -11 322 B> 13 310 2 344 -12 322 <B 0 1 1 310 2 + 366 -34 <B 122 0 1 1 310 2 367 -35 <A 2 122 0 1 1 310 2 368 -34 1 B> 2 122 0 1 1 310 2 369 -35 1 <C 123 0 1 1 310 2 370 -34 3 C> 123 0 1 1 310 2 + 393 -11 324 C> 0 1 1 310 2 394 -10 325 B> 1 1 310 2 395 -11 325 <B 0 1 310 2 + 420 -36 <B 125 0 1 310 2 421 -37 <A 2 125 0 1 310 2 422 -36 1 B> 2 125 0 1 310 2 423 -37 1 <C 126 0 1 310 2 424 -36 3 C> 126 0 1 310 2 + 450 -10 327 C> 0 1 310 2 451 -9 328 B> 1 310 2 452 -10 328 <B 0 310 2 + 480 -38 <B 128 0 310 2 481 -39 <A 2 128 0 310 2 482 -38 1 B> 2 128 0 310 2 483 -39 1 <C 129 0 310 2 484 -38 3 C> 129 0 310 2 + 513 -9 330 C> 0 310 2 514 -8 331 B> 310 2 515 -9 331 <B 1 39 2 + 546 -40 <B 132 39 2 547 -41 <A 2 132 39 2 548 -40 1 B> 2 132 39 2 549 -41 1 <C 133 39 2 550 -40 3 C> 133 39 2 + 583 -7 334 C> 39 2 584 -8 334 <C 1 38 2 + 618 -42 <C 135 38 2 619 -41 3 B> 135 38 2 620 -42 3 <B 0 134 38 2 621 -43 <B 1 0 134 38 2 622 -44 <A 2 1 0 134 38 2 623 -43 1 B> 2 1 0 134 38 2 624 -44 1 <C 1 1 0 134 38 2 625 -43 3 C> 1 1 0 134 38 2 + 627 -41 33 C> 0 134 38 2 628 -40 34 B> 134 38 2 629 -41 34 <B 0 133 38 2 + 633 -45 <B 14 0 133 38 2 634 -46 <A 2 14 0 133 38 2 635 -45 1 B> 2 14 0 133 38 2 636 -46 1 <C 15 0 133 38 2 637 -45 3 C> 15 0 133 38 2 + 642 -40 36 C> 0 133 38 2 643 -39 37 B> 133 38 2 644 -40 37 <B 0 132 38 2 + 651 -47 <B 17 0 132 38 2 652 -48 <A 2 17 0 132 38 2 653 -47 1 B> 2 17 0 132 38 2 654 -48 1 <C 18 0 132 38 2 655 -47 3 C> 18 0 132 38 2 + 663 -39 39 C> 0 132 38 2 664 -38 310 B> 132 38 2 665 -39 310 <B 0 131 38 2 + 675 -49 <B 110 0 131 38 2 676 -50 <A 2 110 0 131 38 2 677 -49 1 B> 2 110 0 131 38 2 678 -50 1 <C 111 0 131 38 2 679 -49 3 C> 111 0 131 38 2 + 690 -38 312 C> 0 131 38 2 691 -37 313 B> 131 38 2 692 -38 313 <B 0 130 38 2 + 705 -51 <B 113 0 130 38 2 706 -52 <A 2 113 0 130 38 2 After 706 steps (201 lines): state = A. Produced 53 nonzeros. Tape index -52, scanned [-51 .. 2].
State | Count | Execution count | First in step | ||||||
---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
A | 40 | 25 | 1 | 1 | 13 | 0 | 2 | 3 | 89 |
B | 317 | 26 | 22 | 24 | 245 | 1 | 4 | 7 | 17 |
C | 349 | 24 | 277 | 48 | 10 | 8 | 12 |