Comment: This TM produces >1.4x10^2355 nonzeros in >3.4x10^4710 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
A | 1RB | 2LB | 2RA | 1LA | 1 | right | B | 2 | left | B | 2 | right | A | 1 | left | A |
B | 2LA | 1RC | 0LB | 2RA | 2 | left | A | 1 | right | C | 0 | left | B | 2 | right | A |
C | 1RB | 3LC | 1LA | 1RH | 1 | right | B | 3 | left | C | 1 | left | A | 1 | right | H |
Simulation is done just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. The same TM as 2-bck-macro machine. The same TM as 2-bck-macro machine with pure additive config-TRs. Step Tpos St Tape contents 0 0 A . . . . . 0 1 1 B . . . . . 10 2 0 A . . . . . 12 3 -1 B . . . . .022 4 -2 A . . . . 0222 5 -1 B . . . . 1222 6 -2 B . . . . 1022 7 -1 C . . . . 1022 8 0 B . . . . 1122 9 -1 B . . . . 1102 10 0 C . . . . 1102 11 1 B . . . . 1112 12 0 B . . . . 1110 13 1 C . . . . 1110 14 2 B . . . . 11110 15 1 A . . . . 11112 16 0 B . . . . 11122 17 1 C . . . . 11122 18 0 A . . . . 11112 19 -1 B . . . . 11212 20 0 C . . . . 11212 21 -1 A . . . . 11112 22 -2 B . . . . 12112 23 -1 C . . . . 12112 24 -2 A . . . . 11112 25 -3 B . . . .021112 26 -4 A . . . 0221112 27 -3 B . . . 1221112 28 -4 B . . . 1021112 29 -3 C . . . 1021112 30 -2 B . . . 1121112 31 -3 B . . . 1101112 32 -2 C . . . 1101112 33 -1 B . . . 1111112 34 0 C . . . 1111112 35 -1 C . . . 1111312 36 -2 C . . . 1113312 37 -3 C . . . 1133312 38 -4 C . . . 1333312 39 -5 C . . .03333312 40 -4 B . . .13333312 41 -3 A . . .12333312 42 -4 A . . .12133312 43 -3 A . . .12133312 44 -4 B . . .12233312 45 -5 B . . .10233312 46 -4 C . . .10233312 47 -3 B . . .11233312 48 -4 B . . .11033312 49 -3 C . . .11033312 50 -2 B . . .11133312 51 -1 A . . .11123312 52 -2 A . . .11121312 53 -1 A . . .11121312 54 -2 B . . .11122312 55 -3 B . . .11102312 56 -2 C . . .11102312 57 -1 B . . .11112312 58 -2 B . . .11110312 59 -1 C . . .11110312 60 0 B . . .11111312 61 1 A . . .11111212 62 0 B . . .11111222 63 -1 B . . .11111022 64 0 C . . .11111022 65 1 B . . .11111122 66 0 B . . .11111102 67 1 C . . .11111102 68 2 B . . .11111112 69 1 B . . .11111110 70 2 C . . .11111110 71 3 B . . .111111110 72 2 A . . .111111112 73 1 B . . .111111122 74 2 C . . .111111122 75 1 A . . .111111112 76 0 B . . .111111212 77 1 C . . .111111212 78 0 A . . .111111112 79 -1 B . . .111112112 80 0 C . . .111112112 81 -1 A . . .111111112 82 -2 B . . .111121112 83 -1 C . . .111121112 84 -2 A . . .111111112 85 -3 B . . .111211112 86 -2 C . . .111211112 87 -3 A . . .111111112 88 -4 B . . .112111112 89 -3 C . . .112111112 90 -4 A . . .111111112 91 -5 B . . .121111112 92 -4 C . . .121111112 93 -5 A . . .111111112 94 -6 B . . 0211111112 95 -7 A . .02211111112 96 -6 B . .12211111112 97 -7 B . .10211111112 98 -6 C . .10211111112 99 -5 B . .11211111112 100 -6 B . .11011111112 101 -5 C . .11011111112 102 -4 B . .11111111112 103 -3 C . .11111111112 104 -4 C . .11113111112 105 -5 C . .11133111112 106 -6 C . .11333111112 107 -7 C . .13333111112 108 -8 C . 033333111112 109 -7 B . 133333111112 110 -6 A . 123333111112 111 -7 A . 121333111112 112 -6 A . 121333111112 113 -7 B . 122333111112 114 -8 B . 102333111112 115 -7 C . 102333111112 116 -6 B . 112333111112 117 -7 B . 110333111112 118 -6 C . 110333111112 119 -5 B . 111333111112 120 -4 A . 111233111112 121 -5 A . 111213111112 122 -4 A . 111213111112 123 -5 B . 111223111112 124 -6 B . 111023111112 125 -5 C . 111023111112 126 -4 B . 111123111112 127 -5 B . 111103111112 128 -4 C . 111103111112 129 -3 B . 111113111112 130 -2 A . 111112111112 131 -3 B . 111112211112 132 -4 B . 111110211112 133 -3 C . 111110211112 134 -2 B . 111111211112 135 -3 B . 111111011112 136 -2 C . 111111011112 137 -1 B . 111111111112 138 0 C . 111111111112 139 -1 C . 111111113112 140 -2 C . 111111133112 141 -3 C . 111111333112 142 -4 C . 111113333112 143 -5 C . 111133333112 144 -6 C . 111333333112 145 -7 C . 113333333112 146 -8 C . 133333333112 147 -9 C .0333333333112 148 -8 B .1333333333112 149 -7 A .1233333333112 150 -8 A .1213333333112 151 -7 A .1213333333112 152 -8 B .1223333333112 153 -9 B .1023333333112 154 -8 C .1023333333112 155 -7 B .1123333333112 156 -8 B .1103333333112 157 -7 C .1103333333112 158 -6 B .1113333333112 159 -5 A .1112333333112 160 -6 A .1112133333112 161 -5 A .1112133333112 162 -6 B .1112233333112 163 -7 B .1110233333112 164 -6 C .1110233333112 165 -5 B .1111233333112 166 -6 B .1111033333112 167 -5 C .1111033333112 168 -4 B .1111133333112 169 -3 A .1111123333112 170 -4 A .1111121333112 171 -3 A .1111121333112 172 -4 B .1111122333112 173 -5 B .1111102333112 174 -4 C .1111102333112 175 -3 B .1111112333112 176 -4 B .1111110333112 177 -3 C .1111110333112 178 -2 B .1111111333112 179 -1 A .1111111233112 180 -2 A .1111111213112 181 -1 A .1111111213112 182 -2 B .1111111223112 183 -3 B .1111111023112 184 -2 C .1111111023112 185 -1 B .1111111123112 186 -2 B .1111111103112 187 -1 C .1111111103112 188 0 B .1111111113112 189 1 A .1111111112112 190 0 B .1111111112212 191 -1 B .1111111110212 192 0 C .1111111110212 193 1 B .1111111111212 194 0 B .1111111111012 195 1 C .1111111111012 196 2 B .1111111111112 197 3 C .1111111111112 198 2 A .1111111111111 199 1 B .1111111111121 200 2 C .1111111111121 After 200 steps (201 lines): state = C. Produced 13 nonzeros. Tape index 2, scanned [-9 .. 3].
State | Count | Execution count | First in step | ||||||
---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
A | 45 | 4 | 25 | 8 | 8 | 0 | 2 | 42 | 41 |
B | 92 | 6 | 45 | 30 | 11 | 1 | 6 | 5 | 40 |
C | 63 | 33 | 19 | 11 | 7 | 34 | 17 |