3-state 4-symbol #g (T.J. & S. Ligocki)

Comment: This TM produces >1.4x10^2355 nonzeros in >3.4x10^4710 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on 0 on 1 on 2 on 3
Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 2LB 2RA 1LA 1 right B 2 left B 2 right A 1 left A
B 2LA 1RC 0LB 2RA 2 left A 1 right C 0 left B 2 right A
C 1RB 3LC 1LA 1RH 1 right B 3 left C 1 left A 1 right H
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . . . . 0
     1    1 B . . . . . 10
     2    0 A . . . . . 12
     3   -1 B . . . . .022
     4   -2 A . . . . 0222
     5   -1 B . . . . 1222
     6   -2 B . . . . 1022
     7   -1 C . . . . 1022
     8    0 B . . . . 1122
     9   -1 B . . . . 1102
    10    0 C . . . . 1102
    11    1 B . . . . 1112
    12    0 B . . . . 1110
    13    1 C . . . . 1110
    14    2 B . . . . 11110
    15    1 A . . . . 11112
    16    0 B . . . . 11122
    17    1 C . . . . 11122
    18    0 A . . . . 11112
    19   -1 B . . . . 11212
    20    0 C . . . . 11212
    21   -1 A . . . . 11112
    22   -2 B . . . . 12112
    23   -1 C . . . . 12112
    24   -2 A . . . . 11112
    25   -3 B . . . .021112
    26   -4 A . . . 0221112
    27   -3 B . . . 1221112
    28   -4 B . . . 1021112
    29   -3 C . . . 1021112
    30   -2 B . . . 1121112
    31   -3 B . . . 1101112
    32   -2 C . . . 1101112
    33   -1 B . . . 1111112
    34    0 C . . . 1111112
    35   -1 C . . . 1111312
    36   -2 C . . . 1113312
    37   -3 C . . . 1133312
    38   -4 C . . . 1333312
    39   -5 C . . .03333312
    40   -4 B . . .13333312
    41   -3 A . . .12333312
    42   -4 A . . .12133312
    43   -3 A . . .12133312
    44   -4 B . . .12233312
    45   -5 B . . .10233312
    46   -4 C . . .10233312
    47   -3 B . . .11233312
    48   -4 B . . .11033312
    49   -3 C . . .11033312
    50   -2 B . . .11133312
    51   -1 A . . .11123312
    52   -2 A . . .11121312
    53   -1 A . . .11121312
    54   -2 B . . .11122312
    55   -3 B . . .11102312
    56   -2 C . . .11102312
    57   -1 B . . .11112312
    58   -2 B . . .11110312
    59   -1 C . . .11110312
    60    0 B . . .11111312
    61    1 A . . .11111212
    62    0 B . . .11111222
    63   -1 B . . .11111022
    64    0 C . . .11111022
    65    1 B . . .11111122
    66    0 B . . .11111102
    67    1 C . . .11111102
    68    2 B . . .11111112
    69    1 B . . .11111110
    70    2 C . . .11111110
    71    3 B . . .111111110
    72    2 A . . .111111112
    73    1 B . . .111111122
    74    2 C . . .111111122
    75    1 A . . .111111112
    76    0 B . . .111111212
    77    1 C . . .111111212
    78    0 A . . .111111112
    79   -1 B . . .111112112
    80    0 C . . .111112112
    81   -1 A . . .111111112
    82   -2 B . . .111121112
    83   -1 C . . .111121112
    84   -2 A . . .111111112
    85   -3 B . . .111211112
    86   -2 C . . .111211112
    87   -3 A . . .111111112
    88   -4 B . . .112111112
    89   -3 C . . .112111112
    90   -4 A . . .111111112
    91   -5 B . . .121111112
    92   -4 C . . .121111112
    93   -5 A . . .111111112
    94   -6 B . . 0211111112
    95   -7 A . .02211111112
    96   -6 B . .12211111112
    97   -7 B . .10211111112
    98   -6 C . .10211111112
    99   -5 B . .11211111112
   100   -6 B . .11011111112
   101   -5 C . .11011111112
   102   -4 B . .11111111112
   103   -3 C . .11111111112
   104   -4 C . .11113111112
   105   -5 C . .11133111112
   106   -6 C . .11333111112
   107   -7 C . .13333111112
   108   -8 C . 033333111112
   109   -7 B . 133333111112
   110   -6 A . 123333111112
   111   -7 A . 121333111112
   112   -6 A . 121333111112
   113   -7 B . 122333111112
   114   -8 B . 102333111112
   115   -7 C . 102333111112
   116   -6 B . 112333111112
   117   -7 B . 110333111112
   118   -6 C . 110333111112
   119   -5 B . 111333111112
   120   -4 A . 111233111112
   121   -5 A . 111213111112
   122   -4 A . 111213111112
   123   -5 B . 111223111112
   124   -6 B . 111023111112
   125   -5 C . 111023111112
   126   -4 B . 111123111112
   127   -5 B . 111103111112
   128   -4 C . 111103111112
   129   -3 B . 111113111112
   130   -2 A . 111112111112
   131   -3 B . 111112211112
   132   -4 B . 111110211112
   133   -3 C . 111110211112
   134   -2 B . 111111211112
   135   -3 B . 111111011112
   136   -2 C . 111111011112
   137   -1 B . 111111111112
   138    0 C . 111111111112
   139   -1 C . 111111113112
   140   -2 C . 111111133112
   141   -3 C . 111111333112
   142   -4 C . 111113333112
   143   -5 C . 111133333112
   144   -6 C . 111333333112
   145   -7 C . 113333333112
   146   -8 C . 133333333112
   147   -9 C .0333333333112
   148   -8 B .1333333333112
   149   -7 A .1233333333112
   150   -8 A .1213333333112
   151   -7 A .1213333333112
   152   -8 B .1223333333112
   153   -9 B .1023333333112
   154   -8 C .1023333333112
   155   -7 B .1123333333112
   156   -8 B .1103333333112
   157   -7 C .1103333333112
   158   -6 B .1113333333112
   159   -5 A .1112333333112
   160   -6 A .1112133333112
   161   -5 A .1112133333112
   162   -6 B .1112233333112
   163   -7 B .1110233333112
   164   -6 C .1110233333112
   165   -5 B .1111233333112
   166   -6 B .1111033333112
   167   -5 C .1111033333112
   168   -4 B .1111133333112
   169   -3 A .1111123333112
   170   -4 A .1111121333112
   171   -3 A .1111121333112
   172   -4 B .1111122333112
   173   -5 B .1111102333112
   174   -4 C .1111102333112
   175   -3 B .1111112333112
   176   -4 B .1111110333112
   177   -3 C .1111110333112
   178   -2 B .1111111333112
   179   -1 A .1111111233112
   180   -2 A .1111111213112
   181   -1 A .1111111213112
   182   -2 B .1111111223112
   183   -3 B .1111111023112
   184   -2 C .1111111023112
   185   -1 B .1111111123112
   186   -2 B .1111111103112
   187   -1 C .1111111103112
   188    0 B .1111111113112
   189    1 A .1111111112112
   190    0 B .1111111112212
   191   -1 B .1111111110212
   192    0 C .1111111110212
   193    1 B .1111111111212
   194    0 B .1111111111012
   195    1 C .1111111111012
   196    2 B .1111111111112
   197    3 C .1111111111112
   198    2 A .1111111111111
   199    1 B .1111111111121
   200    2 C .1111111111121

After 200 steps (201 lines): state = C.
Produced     13 nonzeros.
Tape index 2, scanned [-9 .. 3].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 0 on 1 on 2 on 3
A 45 4 25 8 8 0 2 42 41
B 92 6 45 30 11 1 6 5 40
C 63 33 19 11   7 34 17  
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:13:51 CEST 2010