Comment: This TM produces >1.4x10^2355 nonzeros in >3.4x10^4710 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
A | 1RB | 2LB | 2RA | 1LA | 1 | right | B | 2 | left | B | 2 | right | A | 1 | left | A |
B | 2LA | 1RC | 0LB | 2RA | 2 | left | A | 1 | right | C | 0 | left | B | 2 | right | A |
C | 1RB | 3LC | 1LA | 1RH | 1 | right | B | 3 | left | C | 1 | left | A | 1 | right | H |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 2-bck-macro machine. The same TM as 2-bck-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <A 2 3 -1 <B 2 2 4 -2 <A 23 5 -1 1 B> 23 6 -2 1 <B 0 2 2 7 -1 1 C> 0 2 2 8 0 1 1 B> 2 2 9 -1 1 1 <B 0 2 10 0 1 1 C> 0 2 11 1 13 B> 2 12 0 13 <B 13 1 13 C> 14 2 14 B> 15 1 14 <A 2 16 0 13 <B 2 2 17 1 13 C> 2 2 18 0 13 <A 1 2 19 -1 1 1 <B 2 1 2 20 0 1 1 C> 2 1 2 21 -1 1 1 <A 1 1 2 22 -2 1 <B 2 1 1 2 23 -1 1 C> 2 1 1 2 24 -2 1 <A 13 2 25 -3 <B 2 13 2 26 -4 <A 2 2 13 2 27 -3 1 B> 2 2 13 2 28 -4 1 <B 0 2 13 2 29 -3 1 C> 0 2 13 2 30 -2 1 1 B> 2 13 2 31 -3 1 1 <B 0 13 2 32 -2 1 1 C> 0 13 2 33 -1 13 B> 13 2 34 0 14 C> 1 1 2 35 -1 14 <C 3 1 2 + 39 -5 <C 35 1 2 40 -4 1 B> 35 1 2 41 -3 1 2 A> 34 1 2 42 -4 1 2 <A 1 33 1 2 43 -3 1 2 A> 1 33 1 2 44 -4 1 2 <B 2 33 1 2 45 -5 1 <B 0 2 33 1 2 46 -4 1 C> 0 2 33 1 2 47 -3 1 1 B> 2 33 1 2 48 -4 1 1 <B 0 33 1 2 49 -3 1 1 C> 0 33 1 2 50 -2 13 B> 33 1 2 51 -1 13 2 A> 3 3 1 2 52 -2 13 2 <A 1 3 1 2 53 -1 13 2 A> 1 3 1 2 54 -2 13 2 <B 2 3 1 2 55 -3 13 <B 0 2 3 1 2 56 -2 13 C> 0 2 3 1 2 57 -1 14 B> 2 3 1 2 58 -2 14 <B 0 3 1 2 59 -1 14 C> 0 3 1 2 60 0 15 B> 3 1 2 61 1 15 2 A> 1 2 62 0 15 2 <B 2 2 63 -1 15 <B 0 2 2 64 0 15 C> 0 2 2 65 1 16 B> 2 2 66 0 16 <B 0 2 67 1 16 C> 0 2 68 2 17 B> 2 69 1 17 <B 70 2 17 C> 71 3 18 B> 72 2 18 <A 2 73 1 17 <B 2 2 74 2 17 C> 2 2 75 1 17 <A 1 2 76 0 16 <B 2 1 2 77 1 16 C> 2 1 2 78 0 16 <A 1 1 2 79 -1 15 <B 2 1 1 2 80 0 15 C> 2 1 1 2 81 -1 15 <A 13 2 82 -2 14 <B 2 13 2 83 -1 14 C> 2 13 2 84 -2 14 <A 14 2 85 -3 13 <B 2 14 2 86 -2 13 C> 2 14 2 87 -3 13 <A 15 2 88 -4 1 1 <B 2 15 2 89 -3 1 1 C> 2 15 2 90 -4 1 1 <A 16 2 91 -5 1 <B 2 16 2 92 -4 1 C> 2 16 2 93 -5 1 <A 17 2 94 -6 <B 2 17 2 95 -7 <A 2 2 17 2 96 -6 1 B> 2 2 17 2 97 -7 1 <B 0 2 17 2 98 -6 1 C> 0 2 17 2 99 -5 1 1 B> 2 17 2 100 -6 1 1 <B 0 17 2 101 -5 1 1 C> 0 17 2 102 -4 13 B> 17 2 103 -3 14 C> 16 2 104 -4 14 <C 3 15 2 + 108 -8 <C 35 15 2 109 -7 1 B> 35 15 2 110 -6 1 2 A> 34 15 2 111 -7 1 2 <A 1 33 15 2 112 -6 1 2 A> 1 33 15 2 113 -7 1 2 <B 2 33 15 2 114 -8 1 <B 0 2 33 15 2 115 -7 1 C> 0 2 33 15 2 116 -6 1 1 B> 2 33 15 2 117 -7 1 1 <B 0 33 15 2 118 -6 1 1 C> 0 33 15 2 119 -5 13 B> 33 15 2 120 -4 13 2 A> 3 3 15 2 121 -5 13 2 <A 1 3 15 2 122 -4 13 2 A> 1 3 15 2 123 -5 13 2 <B 2 3 15 2 124 -6 13 <B 0 2 3 15 2 125 -5 13 C> 0 2 3 15 2 126 -4 14 B> 2 3 15 2 127 -5 14 <B 0 3 15 2 128 -4 14 C> 0 3 15 2 129 -3 15 B> 3 15 2 130 -2 15 2 A> 15 2 131 -3 15 2 <B 2 14 2 132 -4 15 <B 0 2 14 2 133 -3 15 C> 0 2 14 2 134 -2 16 B> 2 14 2 135 -3 16 <B 0 14 2 136 -2 16 C> 0 14 2 137 -1 17 B> 14 2 138 0 18 C> 13 2 139 -1 18 <C 3 1 1 2 + 147 -9 <C 39 1 1 2 148 -8 1 B> 39 1 1 2 149 -7 1 2 A> 38 1 1 2 150 -8 1 2 <A 1 37 1 1 2 151 -7 1 2 A> 1 37 1 1 2 152 -8 1 2 <B 2 37 1 1 2 153 -9 1 <B 0 2 37 1 1 2 154 -8 1 C> 0 2 37 1 1 2 155 -7 1 1 B> 2 37 1 1 2 156 -8 1 1 <B 0 37 1 1 2 157 -7 1 1 C> 0 37 1 1 2 158 -6 13 B> 37 1 1 2 159 -5 13 2 A> 36 1 1 2 160 -6 13 2 <A 1 35 1 1 2 161 -5 13 2 A> 1 35 1 1 2 162 -6 13 2 <B 2 35 1 1 2 163 -7 13 <B 0 2 35 1 1 2 164 -6 13 C> 0 2 35 1 1 2 165 -5 14 B> 2 35 1 1 2 166 -6 14 <B 0 35 1 1 2 167 -5 14 C> 0 35 1 1 2 168 -4 15 B> 35 1 1 2 169 -3 15 2 A> 34 1 1 2 170 -4 15 2 <A 1 33 1 1 2 171 -3 15 2 A> 1 33 1 1 2 172 -4 15 2 <B 2 33 1 1 2 173 -5 15 <B 0 2 33 1 1 2 174 -4 15 C> 0 2 33 1 1 2 175 -3 16 B> 2 33 1 1 2 176 -4 16 <B 0 33 1 1 2 177 -3 16 C> 0 33 1 1 2 178 -2 17 B> 33 1 1 2 179 -1 17 2 A> 3 3 1 1 2 180 -2 17 2 <A 1 3 1 1 2 181 -1 17 2 A> 1 3 1 1 2 182 -2 17 2 <B 2 3 1 1 2 183 -3 17 <B 0 2 3 1 1 2 184 -2 17 C> 0 2 3 1 1 2 185 -1 18 B> 2 3 1 1 2 186 -2 18 <B 0 3 1 1 2 187 -1 18 C> 0 3 1 1 2 188 0 19 B> 3 1 1 2 189 1 19 2 A> 1 1 2 190 0 19 2 <B 2 1 2 191 -1 19 <B 0 2 1 2 192 0 19 C> 0 2 1 2 193 1 110 B> 2 1 2 194 0 110 <B 0 1 2 195 1 110 C> 0 1 2 196 2 111 B> 1 2 197 3 112 C> 2 198 2 112 <A 1 199 1 111 <B 2 1 200 2 111 C> 2 1 201 1 111 <A 1 1 202 0 110 <B 2 1 1 203 1 110 C> 2 1 1 204 0 110 <A 13 205 -1 19 <B 2 13 206 0 19 C> 2 13 207 -1 19 <A 14 208 -2 18 <B 2 14 209 -1 18 C> 2 14 210 -2 18 <A 15 211 -3 17 <B 2 15 212 -2 17 C> 2 15 213 -3 17 <A 16 After 213 steps (201 lines): state = A. Produced 13 nonzeros. Tape index -3, scanned [-9 .. 3].
State | Count | Execution count | First in step | ||||||
---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
A | 49 | 4 | 29 | 8 | 8 | 0 | 2 | 42 | 41 |
B | 96 | 6 | 49 | 30 | 11 | 1 | 6 | 5 | 40 |
C | 68 | 33 | 19 | 16 | 7 | 34 | 17 |