3-state 4-symbol #g (T.J. & S. Ligocki)

Comment: This TM produces >1.4x10^2355 nonzeros in >3.4x10^4710 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on 0 on 1 on 2 on 3
Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 2LB 2RA 1LA 1 right B 2 left B 2 right A 1 left A
B 2LA 1RC 0LB 2RA 2 left A 1 right C 0 left B 2 right A
C 1RB 3LC 1LA 1RH 1 right B 3 left C 1 left A 1 right H
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     0  1 <A 2
     3    -1  <B 2 2
     4    -2  <A 23
     5    -1  1 B> 23
     6    -2  1 <B 0 2 2
     7    -1  1 C> 0 2 2
     8     0  1 1 B> 2 2
     9    -1  1 1 <B 0 2
    10     0  1 1 C> 0 2
    11     1  13 B> 2
    12     0  13 <B
    13     1  13 C>
    14     2  14 B>
    15     1  14 <A 2
    16     0  13 <B 2 2
    17     1  13 C> 2 2
    18     0  13 <A 1 2
    19    -1  1 1 <B 2 1 2
    20     0  1 1 C> 2 1 2
    21    -1  1 1 <A 1 1 2
    22    -2  1 <B 2 1 1 2
    23    -1  1 C> 2 1 1 2
    24    -2  1 <A 13 2
    25    -3  <B 2 13 2
    26    -4  <A 2 2 13 2
    27    -3  1 B> 2 2 13 2
    28    -4  1 <B 0 2 13 2
    29    -3  1 C> 0 2 13 2
    30    -2  1 1 B> 2 13 2
    31    -3  1 1 <B 0 13 2
    32    -2  1 1 C> 0 13 2
    33    -1  13 B> 13 2
    34     0  14 C> 1 1 2
    35    -1  14 <C 3 1 2
+   39    -5  <C 35 1 2
    40    -4  1 B> 35 1 2
    41    -3  1 2 A> 34 1 2
    42    -4  1 2 <A 1 33 1 2
    43    -3  1 2 A> 1 33 1 2
    44    -4  1 2 <B 2 33 1 2
    45    -5  1 <B 0 2 33 1 2
    46    -4  1 C> 0 2 33 1 2
    47    -3  1 1 B> 2 33 1 2
    48    -4  1 1 <B 0 33 1 2
    49    -3  1 1 C> 0 33 1 2
    50    -2  13 B> 33 1 2
    51    -1  13 2 A> 3 3 1 2
    52    -2  13 2 <A 1 3 1 2
    53    -1  13 2 A> 1 3 1 2
    54    -2  13 2 <B 2 3 1 2
    55    -3  13 <B 0 2 3 1 2
    56    -2  13 C> 0 2 3 1 2
    57    -1  14 B> 2 3 1 2
    58    -2  14 <B 0 3 1 2
    59    -1  14 C> 0 3 1 2
    60     0  15 B> 3 1 2
    61     1  15 2 A> 1 2
    62     0  15 2 <B 2 2
    63    -1  15 <B 0 2 2
    64     0  15 C> 0 2 2
    65     1  16 B> 2 2
    66     0  16 <B 0 2
    67     1  16 C> 0 2
    68     2  17 B> 2
    69     1  17 <B
    70     2  17 C>
    71     3  18 B>
    72     2  18 <A 2
    73     1  17 <B 2 2
    74     2  17 C> 2 2
    75     1  17 <A 1 2
    76     0  16 <B 2 1 2
    77     1  16 C> 2 1 2
    78     0  16 <A 1 1 2
    79    -1  15 <B 2 1 1 2
    80     0  15 C> 2 1 1 2
    81    -1  15 <A 13 2
    82    -2  14 <B 2 13 2
    83    -1  14 C> 2 13 2
    84    -2  14 <A 14 2
    85    -3  13 <B 2 14 2
    86    -2  13 C> 2 14 2
    87    -3  13 <A 15 2
    88    -4  1 1 <B 2 15 2
    89    -3  1 1 C> 2 15 2
    90    -4  1 1 <A 16 2
    91    -5  1 <B 2 16 2
    92    -4  1 C> 2 16 2
    93    -5  1 <A 17 2
    94    -6  <B 2 17 2
    95    -7  <A 2 2 17 2
    96    -6  1 B> 2 2 17 2
    97    -7  1 <B 0 2 17 2
    98    -6  1 C> 0 2 17 2
    99    -5  1 1 B> 2 17 2
   100    -6  1 1 <B 0 17 2
   101    -5  1 1 C> 0 17 2
   102    -4  13 B> 17 2
   103    -3  14 C> 16 2
   104    -4  14 <C 3 15 2
+  108    -8  <C 35 15 2
   109    -7  1 B> 35 15 2
   110    -6  1 2 A> 34 15 2
   111    -7  1 2 <A 1 33 15 2
   112    -6  1 2 A> 1 33 15 2
   113    -7  1 2 <B 2 33 15 2
   114    -8  1 <B 0 2 33 15 2
   115    -7  1 C> 0 2 33 15 2
   116    -6  1 1 B> 2 33 15 2
   117    -7  1 1 <B 0 33 15 2
   118    -6  1 1 C> 0 33 15 2
   119    -5  13 B> 33 15 2
   120    -4  13 2 A> 3 3 15 2
   121    -5  13 2 <A 1 3 15 2
   122    -4  13 2 A> 1 3 15 2
   123    -5  13 2 <B 2 3 15 2
   124    -6  13 <B 0 2 3 15 2
   125    -5  13 C> 0 2 3 15 2
   126    -4  14 B> 2 3 15 2
   127    -5  14 <B 0 3 15 2
   128    -4  14 C> 0 3 15 2
   129    -3  15 B> 3 15 2
   130    -2  15 2 A> 15 2
   131    -3  15 2 <B 2 14 2
   132    -4  15 <B 0 2 14 2
   133    -3  15 C> 0 2 14 2
   134    -2  16 B> 2 14 2
   135    -3  16 <B 0 14 2
   136    -2  16 C> 0 14 2
   137    -1  17 B> 14 2
   138     0  18 C> 13 2
   139    -1  18 <C 3 1 1 2
+  147    -9  <C 39 1 1 2
   148    -8  1 B> 39 1 1 2
   149    -7  1 2 A> 38 1 1 2
   150    -8  1 2 <A 1 37 1 1 2
   151    -7  1 2 A> 1 37 1 1 2
   152    -8  1 2 <B 2 37 1 1 2
   153    -9  1 <B 0 2 37 1 1 2
   154    -8  1 C> 0 2 37 1 1 2
   155    -7  1 1 B> 2 37 1 1 2
   156    -8  1 1 <B 0 37 1 1 2
   157    -7  1 1 C> 0 37 1 1 2
   158    -6  13 B> 37 1 1 2
   159    -5  13 2 A> 36 1 1 2
   160    -6  13 2 <A 1 35 1 1 2
   161    -5  13 2 A> 1 35 1 1 2
   162    -6  13 2 <B 2 35 1 1 2
   163    -7  13 <B 0 2 35 1 1 2
   164    -6  13 C> 0 2 35 1 1 2
   165    -5  14 B> 2 35 1 1 2
   166    -6  14 <B 0 35 1 1 2
   167    -5  14 C> 0 35 1 1 2
   168    -4  15 B> 35 1 1 2
   169    -3  15 2 A> 34 1 1 2
   170    -4  15 2 <A 1 33 1 1 2
   171    -3  15 2 A> 1 33 1 1 2
   172    -4  15 2 <B 2 33 1 1 2
   173    -5  15 <B 0 2 33 1 1 2
   174    -4  15 C> 0 2 33 1 1 2
   175    -3  16 B> 2 33 1 1 2
   176    -4  16 <B 0 33 1 1 2
   177    -3  16 C> 0 33 1 1 2
   178    -2  17 B> 33 1 1 2
   179    -1  17 2 A> 3 3 1 1 2
   180    -2  17 2 <A 1 3 1 1 2
   181    -1  17 2 A> 1 3 1 1 2
   182    -2  17 2 <B 2 3 1 1 2
   183    -3  17 <B 0 2 3 1 1 2
   184    -2  17 C> 0 2 3 1 1 2
   185    -1  18 B> 2 3 1 1 2
   186    -2  18 <B 0 3 1 1 2
   187    -1  18 C> 0 3 1 1 2
   188     0  19 B> 3 1 1 2
   189     1  19 2 A> 1 1 2
   190     0  19 2 <B 2 1 2
   191    -1  19 <B 0 2 1 2
   192     0  19 C> 0 2 1 2
   193     1  110 B> 2 1 2
   194     0  110 <B 0 1 2
   195     1  110 C> 0 1 2
   196     2  111 B> 1 2
   197     3  112 C> 2
   198     2  112 <A 1
   199     1  111 <B 2 1
   200     2  111 C> 2 1
   201     1  111 <A 1 1
   202     0  110 <B 2 1 1
   203     1  110 C> 2 1 1
   204     0  110 <A 13
   205    -1  19 <B 2 13
   206     0  19 C> 2 13
   207    -1  19 <A 14
   208    -2  18 <B 2 14
   209    -1  18 C> 2 14
   210    -2  18 <A 15
   211    -3  17 <B 2 15
   212    -2  17 C> 2 15
   213    -3  17 <A 16

After 213 steps (201 lines): state = A.
Produced     13 nonzeros.
Tape index -3, scanned [-9 .. 3].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 0 on 1 on 2 on 3
A 49 4 29 8 8 0 2 42 41
B 96 6 49 30 11 1 6 5 40
C 68 33 19 16   7 34 17  
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:13:51 CEST 2010