Comment: This TM produces >1.4x10^2355 nonzeros in >3.4x10^4710 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
| A | 1RB | 2LB | 2RA | 1LA | 1 | right | B | 2 | left | B | 2 | right | A | 1 | left | A |
| B | 2LA | 1RC | 0LB | 2RA | 2 | left | A | 1 | right | C | 0 | left | B | 2 | right | A |
| C | 1RB | 3LC | 1LA | 1RH | 1 | right | B | 3 | left | C | 1 | left | A | 1 | right | H |
The same TM just simple.
Simulation is done with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.
Step Tpos St Tape contents
0 0 A . . . . . 0
1 1 B . . . . . 10
2 0 A . . . . . 12
3 -1 B . . . . .022
4 -2 A . . . . 0222
5 -1 B . . . . 1222
6 -2 B . . . . 1022
7 -1 C . . . . 1022
8 0 B . . . . 1122
9 -1 B . . . . 1102
10 0 C . . . . 1102
11 1 B . . . . 1112
12 0 B . . . . 1110
13 1 C . . . . 1110
14 2 B . . . . 11110
15 1 A . . . . 11112
16 0 B . . . . 11122
17 1 C . . . . 11122
18 0 A . . . . 11112
19 -1 B . . . . 11212
20 0 C . . . . 11212
21 -1 A . . . . 11112
22 -2 B . . . . 12112
23 -1 C . . . . 12112
24 -2 A . . . . 11112
25 -3 B . . . .021112
26 -4 A . . . 0221112
27 -3 B . . . 1221112
28 -4 B . . . 1021112
29 -3 C . . . 1021112
30 -2 B . . . 1121112
31 -3 B . . . 1101112
32 -2 C . . . 1101112
33 -1 B . . . 1111112
34 0 C . . . 1111112
+ 39 -5 C . . .03333312 by C/1 * 5
40 -4 B . . .13333312
41 -3 A . . .12333312
42 -4 A . . .12133312
43 -3 A . . .12133312
44 -4 B . . .12233312
45 -5 B . . .10233312
46 -4 C . . .10233312
47 -3 B . . .11233312
48 -4 B . . .11033312
49 -3 C . . .11033312
50 -2 B . . .11133312
51 -1 A . . .11123312
52 -2 A . . .11121312
53 -1 A . . .11121312
54 -2 B . . .11122312
55 -3 B . . .11102312
56 -2 C . . .11102312
57 -1 B . . .11112312
58 -2 B . . .11110312
59 -1 C . . .11110312
60 0 B . . .11111312
61 1 A . . .11111212
62 0 B . . .11111222
63 -1 B . . .11111022
64 0 C . . .11111022
65 1 B . . .11111122
66 0 B . . .11111102
67 1 C . . .11111102
68 2 B . . .11111112
69 1 B . . .11111110
70 2 C . . .11111110
71 3 B . . .111111110
72 2 A . . .111111112
73 1 B . . .111111122
74 2 C . . .111111122
75 1 A . . .111111112
76 0 B . . .111111212
77 1 C . . .111111212
78 0 A . . .111111112
79 -1 B . . .111112112
80 0 C . . .111112112
81 -1 A . . .111111112
82 -2 B . . .111121112
83 -1 C . . .111121112
84 -2 A . . .111111112
85 -3 B . . .111211112
86 -2 C . . .111211112
87 -3 A . . .111111112
88 -4 B . . .112111112
89 -3 C . . .112111112
90 -4 A . . .111111112
91 -5 B . . .121111112
92 -4 C . . .121111112
93 -5 A . . .111111112
94 -6 B . . 0211111112
95 -7 A . .02211111112
96 -6 B . .12211111112
97 -7 B . .10211111112
98 -6 C . .10211111112
99 -5 B . .11211111112
100 -6 B . .11011111112
101 -5 C . .11011111112
102 -4 B . .11111111112
103 -3 C . .11111111112
+ 108 -8 C . 033333111112 by C/1 * 5
109 -7 B . 133333111112
110 -6 A . 123333111112
111 -7 A . 121333111112
112 -6 A . 121333111112
113 -7 B . 122333111112
114 -8 B . 102333111112
115 -7 C . 102333111112
116 -6 B . 112333111112
117 -7 B . 110333111112
118 -6 C . 110333111112
119 -5 B . 111333111112
120 -4 A . 111233111112
121 -5 A . 111213111112
122 -4 A . 111213111112
123 -5 B . 111223111112
124 -6 B . 111023111112
125 -5 C . 111023111112
126 -4 B . 111123111112
127 -5 B . 111103111112
128 -4 C . 111103111112
129 -3 B . 111113111112
130 -2 A . 111112111112
131 -3 B . 111112211112
132 -4 B . 111110211112
133 -3 C . 111110211112
134 -2 B . 111111211112
135 -3 B . 111111011112
136 -2 C . 111111011112
137 -1 B . 111111111112
138 0 C . 111111111112
+ 147 -9 C .0333333333112 by C/1 * 9
148 -8 B .1333333333112
149 -7 A .1233333333112
150 -8 A .1213333333112
151 -7 A .1213333333112
152 -8 B .1223333333112
153 -9 B .1023333333112
154 -8 C .1023333333112
155 -7 B .1123333333112
156 -8 B .1103333333112
157 -7 C .1103333333112
158 -6 B .1113333333112
159 -5 A .1112333333112
160 -6 A .1112133333112
161 -5 A .1112133333112
162 -6 B .1112233333112
163 -7 B .1110233333112
164 -6 C .1110233333112
165 -5 B .1111233333112
166 -6 B .1111033333112
167 -5 C .1111033333112
168 -4 B .1111133333112
169 -3 A .1111123333112
170 -4 A .1111121333112
171 -3 A .1111121333112
172 -4 B .1111122333112
173 -5 B .1111102333112
174 -4 C .1111102333112
175 -3 B .1111112333112
176 -4 B .1111110333112
177 -3 C .1111110333112
178 -2 B .1111111333112
179 -1 A .1111111233112
180 -2 A .1111111213112
181 -1 A .1111111213112
182 -2 B .1111111223112
183 -3 B .1111111023112
184 -2 C .1111111023112
185 -1 B .1111111123112
186 -2 B .1111111103112
187 -1 C .1111111103112
188 0 B .1111111113112
189 1 A .1111111112112
190 0 B .1111111112212
191 -1 B .1111111110212
192 0 C .1111111110212
193 1 B .1111111111212
194 0 B .1111111111012
195 1 C .1111111111012
196 2 B .1111111111112
197 3 C .1111111111112
198 2 A .1111111111111
199 1 B .1111111111121
200 2 C .1111111111121
201 1 A .1111111111111
202 0 B .1111111111211
203 1 C .1111111111211
204 0 A .1111111111111
205 -1 B .1111111112111
206 0 C .1111111112111
207 -1 A .1111111111111
208 -2 B .1111111121111
209 -1 C .1111111121111
210 -2 A .1111111111111
211 -3 B .1111111211111
212 -2 C .1111111211111
213 -3 A .1111111111111
214 -4 B .1111112111111
215 -3 C .1111112111111
216 -4 A .1111111111111
After 216 steps (201 lines): state = A.
Produced 13 nonzeros.
Tape index -4, scanned [-9 .. 3].
| State | Count | Execution count | First in step | ||||||
|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
| A | 50 | 4 | 30 | 8 | 8 | 0 | 2 | 42 | 41 |
| B | 97 | 6 | 50 | 30 | 11 | 1 | 6 | 5 | 40 |
| C | 69 | 33 | 19 | 17 | 7 | 34 | 17 | ||