3-state 4-symbol #d (T.J. & S. Ligocki)

Comment: This TM produces >4.6x10^434 nonzeros in >7.6x10^868 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on 0 on 1 on 2 on 3
Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 0RB 3LC 1RC 1 right B 0 right B 3 left C 1 right C
B 0RC 1RH 2RC 3RC 0 right C 1 right H 2 right C 3 right C
C 1LB 2LA 3LA 2RB 1 left B 2 left A 3 left A 2 right B
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . 0
     1    1 B . 10
     2    2 C . 100
     3    1 B . 101
     4    2 C . 101
     5    1 A . 102
     6    2 B . 112
     7    3 C . 1120
     8    2 B . 1121
     9    3 C . 1121
    10    2 A . 1122
    11    1 C . 1132
    12    0 A . 1232
    13    1 B . 0232
    14    2 C . 0232
    15    3 B . 0222
    16    4 C . 02220
    17    3 B . 02221
    18    4 C . 02221
    19    3 A . 02222
    20    2 C . 02232
    21    1 A . 02332
    22    0 C . 03332
    23   -1 B .013332
    24    0 C .013332
    25   -1 A .023332
    26    0 B .123332
    27    1 C .123332
    28    2 B .122332
    29    3 C .122332
    30    4 B .122322
    31    5 C .1223220
    32    4 B .1223221
    33    5 C .1223221
    34    4 A .1223222
    35    3 C .1223232
    36    2 A .1223332
    37    3 C .1221332
    38    4 B .1221232
    39    5 C .1221232
    40    4 A .1221233
    41    5 C .1221213
    42    6 B .12212120
    43    7 C .122121200
    44    6 B .122121201
    45    7 C .122121201
    46    6 A .122121202
    47    7 B .122121212
    48    8 C .1221212120
    49    7 B .1221212121
    50    8 C .1221212121
    51    7 A .1221212122
    52    6 C .1221212132
    53    5 A .1221212232
    54    4 C .1221213232
    55    3 A .1221223232
    56    2 C .1221323232
    57    1 A .1222323232
    58    0 C .1232323232
    59   -1 A .1332323232
    60    0 B .0332323232
    61    1 C .0332323232
    62    2 B .0322323232
    63    3 C .0322323232
    64    4 B .0322223232
    65    5 C .0322223232
    66    6 B .0322222232
    67    7 C .0322222232
    68    8 B .0322222222
    69    9 C .03222222220
    70    8 B .03222222221
    71    9 C .03222222221
    72    8 A .03222222222
    73    7 C .03222222232
    74    6 A .03222222332
    75    5 C .03222223332
    76    4 A .03222233332
    77    3 C .03222333332
    78    2 A .03223333332
    79    1 C .03233333332
    80    0 A .03333333332
    81    1 C .01333333332
    82    2 B .01233333332
    83    3 C .01233333332
    84    4 B .01232333332
    85    5 C .01232333332
    86    6 B .01232323332
    87    7 C .01232323332
    88    8 B .01232323232
    89    9 C .01232323232
    90    8 A .01232323233
    91    9 C .01232323213
    92   10 B .012323232120
    93   11 C .0123232321200
    94   10 B .0123232321201
    95   11 C .0123232321201
    96   10 A .0123232321202
    97   11 B .0123232321212
    98   12 C .01232323212120
    99   11 B .01232323212121
   100   12 C .01232323212121
   101   11 A .01232323212122
   102   10 C .01232323212132
   103    9 A .01232323212232
   104    8 C .01232323213232
   105    7 A .01232323223232
   106    6 C .01232323323232
   107    7 B .01232322323232
   108    8 C .01232322323232
   109    7 A .01232322333232
   110    8 C .01232322133232
   111    9 B .01232322123232
   112   10 C .01232322123232
   113    9 A .01232322123332
   114   10 C .01232322121332
   115   11 B .01232322121232
   116   12 C .01232322121232
   117   11 A .01232322121233
   118   12 C .01232322121213
   119   13 B .012323221212120
   120   14 C .0123232212121200
   121   13 B .0123232212121201
   122   14 C .0123232212121201
   123   13 A .0123232212121202
   124   14 B .0123232212121212
   125   15 C .01232322121212120
   126   14 B .01232322121212121
   127   15 C .01232322121212121
   128   14 A .01232322121212122
   129   13 C .01232322121212132
   130   12 A .01232322121212232
   131   11 C .01232322121213232
   132   10 A .01232322121223232
   133    9 C .01232322121323232
   134    8 A .01232322122323232
   135    7 C .01232322132323232
   136    6 A .01232322232323232
   137    5 C .01232323232323232
   138    4 A .01232333232323232
   139    5 C .01232133232323232
   140    6 B .01232123232323232
   141    7 C .01232123232323232
   142    6 A .01232123332323232
   143    7 C .01232121332323232
   144    8 B .01232121232323232
   145    9 C .01232121232323232
   146    8 A .01232121233323232
   147    9 C .01232121213323232
   148   10 B .01232121212323232
   149   11 C .01232121212323232
   150   10 A .01232121212333232
   151   11 C .01232121212133232
   152   12 B .01232121212123232
   153   13 C .01232121212123232
   154   12 A .01232121212123332
   155   13 C .01232121212121332
   156   14 B .01232121212121232
   157   15 C .01232121212121232
   158   14 A .01232121212121233
   159   15 C .01232121212121213
   160   16 B .012321212121212120
   161   17 C .0123212121212121200
   162   16 B .0123212121212121201
   163   17 C .0123212121212121201
   164   16 A .0123212121212121202
   165   17 B .0123212121212121212
   166   18 C .01232121212121212120
   167   17 B .01232121212121212121
   168   18 C .01232121212121212121
   169   17 A .01232121212121212122
   170   16 C .01232121212121212132
   171   15 A .01232121212121212232
   172   14 C .01232121212121213232
   173   13 A .01232121212121223232
   174   12 C .01232121212121323232
   175   11 A .01232121212122323232
   176   10 C .01232121212132323232
   177    9 A .01232121212232323232
   178    8 C .01232121213232323232
   179    7 A .01232121223232323232
   180    6 C .01232121323232323232
   181    5 A .01232122323232323232
   182    4 C .01232132323232323232
   183    3 A .01232232323232323232
   184    2 C .01233232323232323232
   185    3 B .01223232323232323232
   186    4 C .01223232323232323232
   187    3 A .01223332323232323232
   188    4 C .01221332323232323232
   189    5 B .01221232323232323232
   190    6 C .01221232323232323232
   191    5 A .01221233323232323232
   192    6 C .01221213323232323232
   193    7 B .01221212323232323232
   194    8 C .01221212323232323232
   195    7 A .01221212333232323232
   196    8 C .01221212133232323232
   197    9 B .01221212123232323232
   198   10 C .01221212123232323232
   199    9 A .01221212123332323232
   200   10 C .01221212121332323232

After 200 steps (201 lines): state = C.
Produced     19 nonzeros.
Tape index 10, scanned [-1 .. 18].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 0 on 1 on 2 on 3
A 54 7 2 28 17 0 12 10 36
B 51 11   21 19 1   6 28
C 95 14 31 22 28 2 4 20 14
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:13:45 CEST 2010