Comment: This TM produces >4.6x10^434 nonzeros in >7.6x10^868 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
A | 1RB | 0RB | 3LC | 1RC | 1 | right | B | 0 | right | B | 3 | left | C | 1 | right | C |
B | 0RC | 1RH | 2RC | 3RC | 0 | right | C | 1 | right | H | 2 | right | C | 3 | right | C |
C | 1LB | 2LA | 3LA | 2RB | 1 | left | B | 2 | left | A | 3 | left | A | 2 | right | B |
The same TM just simple. Simulation is done with repetitions reduced. The same TM with tape symbol exponents. The same TM as 2-bck-macro machine. The same TM as 2-bck-macro machine with pure additive config-TRs. Step Tpos St Tape contents 0 0 A . 0 1 1 B . 10 2 2 C . 100 3 1 B . 101 4 2 C . 101 5 1 A . 102 6 2 B . 112 7 3 C . 1120 8 2 B . 1121 9 3 C . 1121 10 2 A . 1122 11 1 C . 1132 12 0 A . 1232 13 1 B . 0232 14 2 C . 0232 15 3 B . 0222 16 4 C . 02220 17 3 B . 02221 18 4 C . 02221 19 3 A . 02222 20 2 C . 02232 21 1 A . 02332 22 0 C . 03332 23 -1 B .013332 24 0 C .013332 25 -1 A .023332 26 0 B .123332 27 1 C .123332 28 2 B .122332 29 3 C .122332 30 4 B .122322 31 5 C .1223220 32 4 B .1223221 33 5 C .1223221 34 4 A .1223222 35 3 C .1223232 36 2 A .1223332 37 3 C .1221332 38 4 B .1221232 39 5 C .1221232 40 4 A .1221233 41 5 C .1221213 42 6 B .12212120 43 7 C .122121200 44 6 B .122121201 45 7 C .122121201 46 6 A .122121202 47 7 B .122121212 48 8 C .1221212120 49 7 B .1221212121 50 8 C .1221212121 51 7 A .1221212122 52 6 C .1221212132 53 5 A .1221212232 54 4 C .1221213232 55 3 A .1221223232 56 2 C .1221323232 57 1 A .1222323232 58 0 C .1232323232 59 -1 A .1332323232 60 0 B .0332323232 61 1 C .0332323232 62 2 B .0322323232 63 3 C .0322323232 64 4 B .0322223232 65 5 C .0322223232 66 6 B .0322222232 67 7 C .0322222232 68 8 B .0322222222 69 9 C .03222222220 70 8 B .03222222221 71 9 C .03222222221 72 8 A .03222222222 73 7 C .03222222232 74 6 A .03222222332 75 5 C .03222223332 76 4 A .03222233332 77 3 C .03222333332 78 2 A .03223333332 79 1 C .03233333332 80 0 A .03333333332 81 1 C .01333333332 82 2 B .01233333332 83 3 C .01233333332 84 4 B .01232333332 85 5 C .01232333332 86 6 B .01232323332 87 7 C .01232323332 88 8 B .01232323232 89 9 C .01232323232 90 8 A .01232323233 91 9 C .01232323213 92 10 B .012323232120 93 11 C .0123232321200 94 10 B .0123232321201 95 11 C .0123232321201 96 10 A .0123232321202 97 11 B .0123232321212 98 12 C .01232323212120 99 11 B .01232323212121 100 12 C .01232323212121 101 11 A .01232323212122 102 10 C .01232323212132 103 9 A .01232323212232 104 8 C .01232323213232 105 7 A .01232323223232 106 6 C .01232323323232 107 7 B .01232322323232 108 8 C .01232322323232 109 7 A .01232322333232 110 8 C .01232322133232 111 9 B .01232322123232 112 10 C .01232322123232 113 9 A .01232322123332 114 10 C .01232322121332 115 11 B .01232322121232 116 12 C .01232322121232 117 11 A .01232322121233 118 12 C .01232322121213 119 13 B .012323221212120 120 14 C .0123232212121200 121 13 B .0123232212121201 122 14 C .0123232212121201 123 13 A .0123232212121202 124 14 B .0123232212121212 125 15 C .01232322121212120 126 14 B .01232322121212121 127 15 C .01232322121212121 128 14 A .01232322121212122 129 13 C .01232322121212132 130 12 A .01232322121212232 131 11 C .01232322121213232 132 10 A .01232322121223232 133 9 C .01232322121323232 134 8 A .01232322122323232 135 7 C .01232322132323232 136 6 A .01232322232323232 137 5 C .01232323232323232 138 4 A .01232333232323232 139 5 C .01232133232323232 140 6 B .01232123232323232 141 7 C .01232123232323232 142 6 A .01232123332323232 143 7 C .01232121332323232 144 8 B .01232121232323232 145 9 C .01232121232323232 146 8 A .01232121233323232 147 9 C .01232121213323232 148 10 B .01232121212323232 149 11 C .01232121212323232 150 10 A .01232121212333232 151 11 C .01232121212133232 152 12 B .01232121212123232 153 13 C .01232121212123232 154 12 A .01232121212123332 155 13 C .01232121212121332 156 14 B .01232121212121232 157 15 C .01232121212121232 158 14 A .01232121212121233 159 15 C .01232121212121213 160 16 B .012321212121212120 161 17 C .0123212121212121200 162 16 B .0123212121212121201 163 17 C .0123212121212121201 164 16 A .0123212121212121202 165 17 B .0123212121212121212 166 18 C .01232121212121212120 167 17 B .01232121212121212121 168 18 C .01232121212121212121 169 17 A .01232121212121212122 170 16 C .01232121212121212132 171 15 A .01232121212121212232 172 14 C .01232121212121213232 173 13 A .01232121212121223232 174 12 C .01232121212121323232 175 11 A .01232121212122323232 176 10 C .01232121212132323232 177 9 A .01232121212232323232 178 8 C .01232121213232323232 179 7 A .01232121223232323232 180 6 C .01232121323232323232 181 5 A .01232122323232323232 182 4 C .01232132323232323232 183 3 A .01232232323232323232 184 2 C .01233232323232323232 185 3 B .01223232323232323232 186 4 C .01223232323232323232 187 3 A .01223332323232323232 188 4 C .01221332323232323232 189 5 B .01221232323232323232 190 6 C .01221232323232323232 191 5 A .01221233323232323232 192 6 C .01221213323232323232 193 7 B .01221212323232323232 194 8 C .01221212323232323232 195 7 A .01221212333232323232 196 8 C .01221212133232323232 197 9 B .01221212123232323232 198 10 C .01221212123232323232 199 9 A .01221212123332323232 200 10 C .01221212121332323232 After 200 steps (201 lines): state = C. Produced 19 nonzeros. Tape index 10, scanned [-1 .. 18].
State | Count | Execution count | First in step | ||||||
---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
A | 54 | 7 | 2 | 28 | 17 | 0 | 12 | 10 | 36 |
B | 51 | 11 | 21 | 19 | 1 | 6 | 28 | ||
C | 95 | 14 | 31 | 22 | 28 | 2 | 4 | 20 | 14 |