Comment: This TM produces >4.6x10^434 nonzeros in >7.6x10^868 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
| A | 1RB | 0RB | 3LC | 1RC | 1 | right | B | 0 | right | B | 3 | left | C | 1 | right | C |
| B | 0RC | 1RH | 2RC | 3RC | 0 | right | C | 1 | right | H | 2 | right | C | 3 | right | C |
| C | 1LB | 2LA | 3LA | 2RB | 1 | left | B | 2 | left | A | 3 | left | A | 2 | right | B |
The same TM just simple.
Simulation is done with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.
Step Tpos St Tape contents
0 0 A . 0
1 1 B . 10
2 2 C . 100
3 1 B . 101
4 2 C . 101
5 1 A . 102
6 2 B . 112
7 3 C . 1120
8 2 B . 1121
9 3 C . 1121
10 2 A . 1122
11 1 C . 1132
12 0 A . 1232
13 1 B . 0232
14 2 C . 0232
15 3 B . 0222
16 4 C . 02220
17 3 B . 02221
18 4 C . 02221
19 3 A . 02222
20 2 C . 02232
21 1 A . 02332
22 0 C . 03332
23 -1 B .013332
24 0 C .013332
25 -1 A .023332
26 0 B .123332
27 1 C .123332
28 2 B .122332
29 3 C .122332
30 4 B .122322
31 5 C .1223220
32 4 B .1223221
33 5 C .1223221
34 4 A .1223222
35 3 C .1223232
36 2 A .1223332
37 3 C .1221332
38 4 B .1221232
39 5 C .1221232
40 4 A .1221233
41 5 C .1221213
42 6 B .12212120
43 7 C .122121200
44 6 B .122121201
45 7 C .122121201
46 6 A .122121202
47 7 B .122121212
48 8 C .1221212120
49 7 B .1221212121
50 8 C .1221212121
51 7 A .1221212122
52 6 C .1221212132
53 5 A .1221212232
54 4 C .1221213232
55 3 A .1221223232
56 2 C .1221323232
57 1 A .1222323232
58 0 C .1232323232
59 -1 A .1332323232
60 0 B .0332323232
61 1 C .0332323232
62 2 B .0322323232
63 3 C .0322323232
64 4 B .0322223232
65 5 C .0322223232
66 6 B .0322222232
67 7 C .0322222232
68 8 B .0322222222
69 9 C .03222222220
70 8 B .03222222221
71 9 C .03222222221
72 8 A .03222222222
73 7 C .03222222232
74 6 A .03222222332
75 5 C .03222223332
76 4 A .03222233332
77 3 C .03222333332
78 2 A .03223333332
79 1 C .03233333332
80 0 A .03333333332
81 1 C .01333333332
82 2 B .01233333332
83 3 C .01233333332
84 4 B .01232333332
85 5 C .01232333332
86 6 B .01232323332
87 7 C .01232323332
88 8 B .01232323232
89 9 C .01232323232
90 8 A .01232323233
91 9 C .01232323213
92 10 B .012323232120
93 11 C .0123232321200
94 10 B .0123232321201
95 11 C .0123232321201
96 10 A .0123232321202
97 11 B .0123232321212
98 12 C .01232323212120
99 11 B .01232323212121
100 12 C .01232323212121
101 11 A .01232323212122
102 10 C .01232323212132
103 9 A .01232323212232
104 8 C .01232323213232
105 7 A .01232323223232
106 6 C .01232323323232
107 7 B .01232322323232
108 8 C .01232322323232
109 7 A .01232322333232
110 8 C .01232322133232
111 9 B .01232322123232
112 10 C .01232322123232
113 9 A .01232322123332
114 10 C .01232322121332
115 11 B .01232322121232
116 12 C .01232322121232
117 11 A .01232322121233
118 12 C .01232322121213
119 13 B .012323221212120
120 14 C .0123232212121200
121 13 B .0123232212121201
122 14 C .0123232212121201
123 13 A .0123232212121202
124 14 B .0123232212121212
125 15 C .01232322121212120
126 14 B .01232322121212121
127 15 C .01232322121212121
128 14 A .01232322121212122
129 13 C .01232322121212132
130 12 A .01232322121212232
131 11 C .01232322121213232
132 10 A .01232322121223232
133 9 C .01232322121323232
134 8 A .01232322122323232
135 7 C .01232322132323232
136 6 A .01232322232323232
137 5 C .01232323232323232
138 4 A .01232333232323232
139 5 C .01232133232323232
140 6 B .01232123232323232
141 7 C .01232123232323232
142 6 A .01232123332323232
143 7 C .01232121332323232
144 8 B .01232121232323232
145 9 C .01232121232323232
146 8 A .01232121233323232
147 9 C .01232121213323232
148 10 B .01232121212323232
149 11 C .01232121212323232
150 10 A .01232121212333232
151 11 C .01232121212133232
152 12 B .01232121212123232
153 13 C .01232121212123232
154 12 A .01232121212123332
155 13 C .01232121212121332
156 14 B .01232121212121232
157 15 C .01232121212121232
158 14 A .01232121212121233
159 15 C .01232121212121213
160 16 B .012321212121212120
161 17 C .0123212121212121200
162 16 B .0123212121212121201
163 17 C .0123212121212121201
164 16 A .0123212121212121202
165 17 B .0123212121212121212
166 18 C .01232121212121212120
167 17 B .01232121212121212121
168 18 C .01232121212121212121
169 17 A .01232121212121212122
170 16 C .01232121212121212132
171 15 A .01232121212121212232
172 14 C .01232121212121213232
173 13 A .01232121212121223232
174 12 C .01232121212121323232
175 11 A .01232121212122323232
176 10 C .01232121212132323232
177 9 A .01232121212232323232
178 8 C .01232121213232323232
179 7 A .01232121223232323232
180 6 C .01232121323232323232
181 5 A .01232122323232323232
182 4 C .01232132323232323232
183 3 A .01232232323232323232
184 2 C .01233232323232323232
185 3 B .01223232323232323232
186 4 C .01223232323232323232
187 3 A .01223332323232323232
188 4 C .01221332323232323232
189 5 B .01221232323232323232
190 6 C .01221232323232323232
191 5 A .01221233323232323232
192 6 C .01221213323232323232
193 7 B .01221212323232323232
194 8 C .01221212323232323232
195 7 A .01221212333232323232
196 8 C .01221212133232323232
197 9 B .01221212123232323232
198 10 C .01221212123232323232
199 9 A .01221212123332323232
200 10 C .01221212121332323232
After 200 steps (201 lines): state = C.
Produced 19 nonzeros.
Tape index 10, scanned [-1 .. 18].
| State | Count | Execution count | First in step | ||||||
|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
| A | 54 | 7 | 2 | 28 | 17 | 0 | 12 | 10 | 36 |
| B | 51 | 11 | 21 | 19 | 1 | 6 | 28 | ||
| C | 95 | 14 | 31 | 22 | 28 | 2 | 4 | 20 | 14 |