Comment: This TM produces >4.6x10^434 nonzeros in >7.6x10^868 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
| A | 1RB | 0RB | 3LC | 1RC | 1 | right | B | 0 | right | B | 3 | left | C | 1 | right | C |
| B | 0RC | 1RH | 2RC | 3RC | 0 | right | C | 1 | right | H | 2 | right | C | 3 | right | C |
| C | 1LB | 2LA | 3LA | 2RB | 1 | left | B | 2 | left | A | 3 | left | A | 2 | right | B |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 2 1 0 C>
3 1 1 0 <B 1
4 2 1 0 C> 1
5 1 1 0 <A 2
6 2 1 1 B> 2
7 3 1 1 2 C>
8 2 1 1 2 <B 1
9 3 1 1 2 C> 1
10 2 1 1 2 <A 2
11 1 1 1 <C 3 2
12 0 1 <A 2 3 2
13 1 B> 2 3 2
14 2 2 C> 3 2
15 3 2 2 B> 2
16 4 23 C>
17 3 23 <B 1
18 4 23 C> 1
19 3 23 <A 2
20 2 2 2 <C 3 2
21 1 2 <A 3 3 2
22 0 <C 33 2
23 -1 <B 1 33 2
24 0 C> 1 33 2
25 -1 <A 2 33 2
26 0 1 B> 2 33 2
27 1 1 2 C> 33 2
28 2 1 2 2 B> 3 3 2
29 3 1 2 2 3 C> 3 2
30 4 1 2 2 3 2 B> 2
31 5 1 2 2 3 2 2 C>
32 4 1 2 2 3 2 2 <B 1
33 5 1 2 2 3 2 2 C> 1
34 4 1 2 2 3 2 2 <A 2
35 3 1 2 2 3 2 <C 3 2
36 2 1 2 2 3 <A 3 3 2
37 3 1 2 2 1 C> 3 3 2
38 4 1 2 2 1 2 B> 3 2
39 5 1 2 2 1 2 3 C> 2
40 4 1 2 2 1 2 3 <A 3
41 5 1 2 2 1 2 1 C> 3
42 6 1 2 2 1 2 1 2 B>
43 7 1 2 2 1 2 1 2 0 C>
44 6 1 2 2 1 2 1 2 0 <B 1
45 7 1 2 2 1 2 1 2 0 C> 1
46 6 1 2 2 1 2 1 2 0 <A 2
47 7 1 2 2 1 2 1 2 1 B> 2
48 8 1 2 2 1 2 1 2 1 2 C>
49 7 1 2 2 1 2 1 2 1 2 <B 1
50 8 1 2 2 1 2 1 2 1 2 C> 1
51 7 1 2 2 1 2 1 2 1 2 <A 2
52 6 1 2 2 1 2 1 2 1 <C 3 2
53 5 1 2 2 1 2 1 2 <A 2 3 2
54 4 1 2 2 1 2 1 <C 3 2 3 2
55 3 1 2 2 1 2 <A 2 3 2 3 2
56 2 1 2 2 1 <C 3 2 3 2 3 2
57 1 1 2 2 <A 2 3 2 3 2 3 2
58 0 1 2 <C 3 2 3 2 3 2 3 2
59 -1 1 <A 3 3 2 3 2 3 2 3 2
60 0 B> 3 3 2 3 2 3 2 3 2
61 1 3 C> 3 2 3 2 3 2 3 2
62 2 3 2 B> 2 3 2 3 2 3 2
63 3 3 2 2 C> 3 2 3 2 3 2
64 4 3 23 B> 2 3 2 3 2
65 5 3 24 C> 3 2 3 2
66 6 3 25 B> 2 3 2
67 7 3 26 C> 3 2
68 8 3 27 B> 2
69 9 3 28 C>
70 8 3 28 <B 1
71 9 3 28 C> 1
72 8 3 28 <A 2
73 7 3 27 <C 3 2
74 6 3 26 <A 3 3 2
75 5 3 25 <C 33 2
76 4 3 24 <A 34 2
77 3 3 23 <C 35 2
78 2 3 2 2 <A 36 2
79 1 3 2 <C 37 2
80 0 3 <A 38 2
81 1 1 C> 38 2
82 2 1 2 B> 37 2
83 3 1 2 3 C> 36 2
84 4 1 2 3 2 B> 35 2
85 5 1 2 3 2 3 C> 34 2
86 6 1 2 3 2 3 2 B> 33 2
87 7 1 2 3 2 3 2 3 C> 3 3 2
88 8 1 2 3 2 3 2 3 2 B> 3 2
89 9 1 2 3 2 3 2 3 2 3 C> 2
90 8 1 2 3 2 3 2 3 2 3 <A 3
91 9 1 2 3 2 3 2 3 2 1 C> 3
92 10 1 2 3 2 3 2 3 2 1 2 B>
93 11 1 2 3 2 3 2 3 2 1 2 0 C>
94 10 1 2 3 2 3 2 3 2 1 2 0 <B 1
95 11 1 2 3 2 3 2 3 2 1 2 0 C> 1
96 10 1 2 3 2 3 2 3 2 1 2 0 <A 2
97 11 1 2 3 2 3 2 3 2 1 2 1 B> 2
98 12 1 2 3 2 3 2 3 2 1 2 1 2 C>
99 11 1 2 3 2 3 2 3 2 1 2 1 2 <B 1
100 12 1 2 3 2 3 2 3 2 1 2 1 2 C> 1
101 11 1 2 3 2 3 2 3 2 1 2 1 2 <A 2
102 10 1 2 3 2 3 2 3 2 1 2 1 <C 3 2
103 9 1 2 3 2 3 2 3 2 1 2 <A 2 3 2
104 8 1 2 3 2 3 2 3 2 1 <C 3 2 3 2
105 7 1 2 3 2 3 2 3 2 <A 2 3 2 3 2
106 6 1 2 3 2 3 2 3 <C 3 2 3 2 3 2
107 7 1 2 3 2 3 2 2 B> 3 2 3 2 3 2
108 8 1 2 3 2 3 2 2 3 C> 2 3 2 3 2
109 7 1 2 3 2 3 2 2 3 <A 3 3 2 3 2
110 8 1 2 3 2 3 2 2 1 C> 3 3 2 3 2
111 9 1 2 3 2 3 2 2 1 2 B> 3 2 3 2
112 10 1 2 3 2 3 2 2 1 2 3 C> 2 3 2
113 9 1 2 3 2 3 2 2 1 2 3 <A 3 3 2
114 10 1 2 3 2 3 2 2 1 2 1 C> 3 3 2
115 11 1 2 3 2 3 2 2 1 2 1 2 B> 3 2
116 12 1 2 3 2 3 2 2 1 2 1 2 3 C> 2
117 11 1 2 3 2 3 2 2 1 2 1 2 3 <A 3
118 12 1 2 3 2 3 2 2 1 2 1 2 1 C> 3
119 13 1 2 3 2 3 2 2 1 2 1 2 1 2 B>
120 14 1 2 3 2 3 2 2 1 2 1 2 1 2 0 C>
121 13 1 2 3 2 3 2 2 1 2 1 2 1 2 0 <B 1
122 14 1 2 3 2 3 2 2 1 2 1 2 1 2 0 C> 1
123 13 1 2 3 2 3 2 2 1 2 1 2 1 2 0 <A 2
124 14 1 2 3 2 3 2 2 1 2 1 2 1 2 1 B> 2
125 15 1 2 3 2 3 2 2 1 2 1 2 1 2 1 2 C>
126 14 1 2 3 2 3 2 2 1 2 1 2 1 2 1 2 <B 1
127 15 1 2 3 2 3 2 2 1 2 1 2 1 2 1 2 C> 1
128 14 1 2 3 2 3 2 2 1 2 1 2 1 2 1 2 <A 2
129 13 1 2 3 2 3 2 2 1 2 1 2 1 2 1 <C 3 2
130 12 1 2 3 2 3 2 2 1 2 1 2 1 2 <A 2 3 2
131 11 1 2 3 2 3 2 2 1 2 1 2 1 <C 3 2 3 2
132 10 1 2 3 2 3 2 2 1 2 1 2 <A 2 3 2 3 2
133 9 1 2 3 2 3 2 2 1 2 1 <C 3 2 3 2 3 2
134 8 1 2 3 2 3 2 2 1 2 <A 2 3 2 3 2 3 2
135 7 1 2 3 2 3 2 2 1 <C 3 2 3 2 3 2 3 2
136 6 1 2 3 2 3 2 2 <A 2 3 2 3 2 3 2 3 2
137 5 1 2 3 2 3 2 <C 3 2 3 2 3 2 3 2 3 2
138 4 1 2 3 2 3 <A 3 3 2 3 2 3 2 3 2 3 2
139 5 1 2 3 2 1 C> 3 3 2 3 2 3 2 3 2 3 2
140 6 1 2 3 2 1 2 B> 3 2 3 2 3 2 3 2 3 2
141 7 1 2 3 2 1 2 3 C> 2 3 2 3 2 3 2 3 2
142 6 1 2 3 2 1 2 3 <A 3 3 2 3 2 3 2 3 2
143 7 1 2 3 2 1 2 1 C> 3 3 2 3 2 3 2 3 2
144 8 1 2 3 2 1 2 1 2 B> 3 2 3 2 3 2 3 2
145 9 1 2 3 2 1 2 1 2 3 C> 2 3 2 3 2 3 2
146 8 1 2 3 2 1 2 1 2 3 <A 3 3 2 3 2 3 2
147 9 1 2 3 2 1 2 1 2 1 C> 3 3 2 3 2 3 2
148 10 1 2 3 2 1 2 1 2 1 2 B> 3 2 3 2 3 2
149 11 1 2 3 2 1 2 1 2 1 2 3 C> 2 3 2 3 2
150 10 1 2 3 2 1 2 1 2 1 2 3 <A 3 3 2 3 2
151 11 1 2 3 2 1 2 1 2 1 2 1 C> 3 3 2 3 2
152 12 1 2 3 2 1 2 1 2 1 2 1 2 B> 3 2 3 2
153 13 1 2 3 2 1 2 1 2 1 2 1 2 3 C> 2 3 2
154 12 1 2 3 2 1 2 1 2 1 2 1 2 3 <A 3 3 2
155 13 1 2 3 2 1 2 1 2 1 2 1 2 1 C> 3 3 2
156 14 1 2 3 2 1 2 1 2 1 2 1 2 1 2 B> 3 2
157 15 1 2 3 2 1 2 1 2 1 2 1 2 1 2 3 C> 2
158 14 1 2 3 2 1 2 1 2 1 2 1 2 1 2 3 <A 3
159 15 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 C> 3
160 16 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 B>
161 17 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 0 C>
162 16 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 0 <B 1
163 17 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 0 C> 1
164 16 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 0 <A 2
165 17 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 B> 2
166 18 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 C>
167 17 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <B 1
168 18 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 C> 1
169 17 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <A 2
170 16 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 <C 3 2
171 15 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 <A 2 3 2
172 14 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 <C 3 2 3 2
173 13 1 2 3 2 1 2 1 2 1 2 1 2 1 2 <A 2 3 2 3 2
174 12 1 2 3 2 1 2 1 2 1 2 1 2 1 <C 3 2 3 2 3 2
175 11 1 2 3 2 1 2 1 2 1 2 1 2 <A 2 3 2 3 2 3 2
176 10 1 2 3 2 1 2 1 2 1 2 1 <C 3 2 3 2 3 2 3 2
177 9 1 2 3 2 1 2 1 2 1 2 <A 2 3 2 3 2 3 2 3 2
178 8 1 2 3 2 1 2 1 2 1 <C 3 2 3 2 3 2 3 2 3 2
179 7 1 2 3 2 1 2 1 2 <A 2 3 2 3 2 3 2 3 2 3 2
180 6 1 2 3 2 1 2 1 <C 3 2 3 2 3 2 3 2 3 2 3 2
181 5 1 2 3 2 1 2 <A 2 3 2 3 2 3 2 3 2 3 2 3 2
182 4 1 2 3 2 1 <C 3 2 3 2 3 2 3 2 3 2 3 2 3 2
183 3 1 2 3 2 <A 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2
184 2 1 2 3 <C 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2
185 3 1 2 2 B> 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2
186 4 1 2 2 3 C> 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2
187 3 1 2 2 3 <A 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2
188 4 1 2 2 1 C> 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2
189 5 1 2 2 1 2 B> 3 2 3 2 3 2 3 2 3 2 3 2 3 2
190 6 1 2 2 1 2 3 C> 2 3 2 3 2 3 2 3 2 3 2 3 2
191 5 1 2 2 1 2 3 <A 3 3 2 3 2 3 2 3 2 3 2 3 2
192 6 1 2 2 1 2 1 C> 3 3 2 3 2 3 2 3 2 3 2 3 2
193 7 1 2 2 1 2 1 2 B> 3 2 3 2 3 2 3 2 3 2 3 2
194 8 1 2 2 1 2 1 2 3 C> 2 3 2 3 2 3 2 3 2 3 2
195 7 1 2 2 1 2 1 2 3 <A 3 3 2 3 2 3 2 3 2 3 2
196 8 1 2 2 1 2 1 2 1 C> 3 3 2 3 2 3 2 3 2 3 2
197 9 1 2 2 1 2 1 2 1 2 B> 3 2 3 2 3 2 3 2 3 2
198 10 1 2 2 1 2 1 2 1 2 3 C> 2 3 2 3 2 3 2 3 2
199 9 1 2 2 1 2 1 2 1 2 3 <A 3 3 2 3 2 3 2 3 2
200 10 1 2 2 1 2 1 2 1 2 1 C> 3 3 2 3 2 3 2 3 2
After 200 steps (201 lines): state = C.
Produced 19 nonzeros.
Tape index 10, scanned [-1 .. 18].
| State | Count | Execution count | First in step | ||||||
|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
| A | 54 | 7 | 2 | 28 | 17 | 0 | 12 | 10 | 36 |
| B | 51 | 11 | 21 | 19 | 1 | 6 | 28 | ||
| C | 95 | 14 | 31 | 22 | 28 | 2 | 4 | 20 | 14 |