3-state 4-symbol #d (T.J. & S. Ligocki)

Comment: This TM produces >4.6x10^434 nonzeros in >7.6x10^868 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on 0 on 1 on 2 on 3
Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 0RB 3LC 1RC 1 right B 0 right B 3 left C 1 right C
B 0RC 1RH 2RC 3RC 0 right C 1 right H 2 right C 3 right C
C 1LB 2LA 3LA 2RB 1 left B 2 left A 3 left A 2 right B
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     2  1 0 C>
     3     1  1 0 <B 1
     4     2  1 0 C> 1
     5     1  1 0 <A 2
     6     2  1 1 B> 2
     7     3  1 1 2 C>
     8     2  1 1 2 <B 1
     9     3  1 1 2 C> 1
    10     2  1 1 2 <A 2
    11     1  1 1 <C 3 2
    12     0  1 <A 2 3 2
    13     1  B> 2 3 2
    14     2  2 C> 3 2
    15     3  2 2 B> 2
    16     4  23 C>
    17     3  23 <B 1
    18     4  23 C> 1
    19     3  23 <A 2
    20     2  2 2 <C 3 2
    21     1  2 <A 3 3 2
    22     0  <C 33 2
    23    -1  <B 1 33 2
    24     0  C> 1 33 2
    25    -1  <A 2 33 2
    26     0  1 B> 2 33 2
    27     1  1 2 C> 33 2
    28     2  1 2 2 B> 3 3 2
    29     3  1 2 2 3 C> 3 2
    30     4  1 2 2 3 2 B> 2
    31     5  1 2 2 3 2 2 C>
    32     4  1 2 2 3 2 2 <B 1
    33     5  1 2 2 3 2 2 C> 1
    34     4  1 2 2 3 2 2 <A 2
    35     3  1 2 2 3 2 <C 3 2
    36     2  1 2 2 3 <A 3 3 2
    37     3  1 2 2 1 C> 3 3 2
    38     4  1 2 2 1 2 B> 3 2
    39     5  1 2 2 1 2 3 C> 2
    40     4  1 2 2 1 2 3 <A 3
    41     5  1 2 2 1 2 1 C> 3
    42     6  1 2 2 1 2 1 2 B>
    43     7  1 2 2 1 2 1 2 0 C>
    44     6  1 2 2 1 2 1 2 0 <B 1
    45     7  1 2 2 1 2 1 2 0 C> 1
    46     6  1 2 2 1 2 1 2 0 <A 2
    47     7  1 2 2 1 2 1 2 1 B> 2
    48     8  1 2 2 1 2 1 2 1 2 C>
    49     7  1 2 2 1 2 1 2 1 2 <B 1
    50     8  1 2 2 1 2 1 2 1 2 C> 1
    51     7  1 2 2 1 2 1 2 1 2 <A 2
    52     6  1 2 2 1 2 1 2 1 <C 3 2
    53     5  1 2 2 1 2 1 2 <A 2 3 2
    54     4  1 2 2 1 2 1 <C 3 2 3 2
    55     3  1 2 2 1 2 <A 2 3 2 3 2
    56     2  1 2 2 1 <C 3 2 3 2 3 2
    57     1  1 2 2 <A 2 3 2 3 2 3 2
    58     0  1 2 <C 3 2 3 2 3 2 3 2
    59    -1  1 <A 3 3 2 3 2 3 2 3 2
    60     0  B> 3 3 2 3 2 3 2 3 2
    61     1  3 C> 3 2 3 2 3 2 3 2
    62     2  3 2 B> 2 3 2 3 2 3 2
    63     3  3 2 2 C> 3 2 3 2 3 2
    64     4  3 23 B> 2 3 2 3 2
    65     5  3 24 C> 3 2 3 2
    66     6  3 25 B> 2 3 2
    67     7  3 26 C> 3 2
    68     8  3 27 B> 2
    69     9  3 28 C>
    70     8  3 28 <B 1
    71     9  3 28 C> 1
    72     8  3 28 <A 2
    73     7  3 27 <C 3 2
    74     6  3 26 <A 3 3 2
    75     5  3 25 <C 33 2
    76     4  3 24 <A 34 2
    77     3  3 23 <C 35 2
    78     2  3 2 2 <A 36 2
    79     1  3 2 <C 37 2
    80     0  3 <A 38 2
    81     1  1 C> 38 2
    82     2  1 2 B> 37 2
    83     3  1 2 3 C> 36 2
    84     4  1 2 3 2 B> 35 2
    85     5  1 2 3 2 3 C> 34 2
    86     6  1 2 3 2 3 2 B> 33 2
    87     7  1 2 3 2 3 2 3 C> 3 3 2
    88     8  1 2 3 2 3 2 3 2 B> 3 2
    89     9  1 2 3 2 3 2 3 2 3 C> 2
    90     8  1 2 3 2 3 2 3 2 3 <A 3
    91     9  1 2 3 2 3 2 3 2 1 C> 3
    92    10  1 2 3 2 3 2 3 2 1 2 B>
    93    11  1 2 3 2 3 2 3 2 1 2 0 C>
    94    10  1 2 3 2 3 2 3 2 1 2 0 <B 1
    95    11  1 2 3 2 3 2 3 2 1 2 0 C> 1
    96    10  1 2 3 2 3 2 3 2 1 2 0 <A 2
    97    11  1 2 3 2 3 2 3 2 1 2 1 B> 2
    98    12  1 2 3 2 3 2 3 2 1 2 1 2 C>
    99    11  1 2 3 2 3 2 3 2 1 2 1 2 <B 1
   100    12  1 2 3 2 3 2 3 2 1 2 1 2 C> 1
   101    11  1 2 3 2 3 2 3 2 1 2 1 2 <A 2
   102    10  1 2 3 2 3 2 3 2 1 2 1 <C 3 2
   103     9  1 2 3 2 3 2 3 2 1 2 <A 2 3 2
   104     8  1 2 3 2 3 2 3 2 1 <C 3 2 3 2
   105     7  1 2 3 2 3 2 3 2 <A 2 3 2 3 2
   106     6  1 2 3 2 3 2 3 <C 3 2 3 2 3 2
   107     7  1 2 3 2 3 2 2 B> 3 2 3 2 3 2
   108     8  1 2 3 2 3 2 2 3 C> 2 3 2 3 2
   109     7  1 2 3 2 3 2 2 3 <A 3 3 2 3 2
   110     8  1 2 3 2 3 2 2 1 C> 3 3 2 3 2
   111     9  1 2 3 2 3 2 2 1 2 B> 3 2 3 2
   112    10  1 2 3 2 3 2 2 1 2 3 C> 2 3 2
   113     9  1 2 3 2 3 2 2 1 2 3 <A 3 3 2
   114    10  1 2 3 2 3 2 2 1 2 1 C> 3 3 2
   115    11  1 2 3 2 3 2 2 1 2 1 2 B> 3 2
   116    12  1 2 3 2 3 2 2 1 2 1 2 3 C> 2
   117    11  1 2 3 2 3 2 2 1 2 1 2 3 <A 3
   118    12  1 2 3 2 3 2 2 1 2 1 2 1 C> 3
   119    13  1 2 3 2 3 2 2 1 2 1 2 1 2 B>
   120    14  1 2 3 2 3 2 2 1 2 1 2 1 2 0 C>
   121    13  1 2 3 2 3 2 2 1 2 1 2 1 2 0 <B 1
   122    14  1 2 3 2 3 2 2 1 2 1 2 1 2 0 C> 1
   123    13  1 2 3 2 3 2 2 1 2 1 2 1 2 0 <A 2
   124    14  1 2 3 2 3 2 2 1 2 1 2 1 2 1 B> 2
   125    15  1 2 3 2 3 2 2 1 2 1 2 1 2 1 2 C>
   126    14  1 2 3 2 3 2 2 1 2 1 2 1 2 1 2 <B 1
   127    15  1 2 3 2 3 2 2 1 2 1 2 1 2 1 2 C> 1
   128    14  1 2 3 2 3 2 2 1 2 1 2 1 2 1 2 <A 2
   129    13  1 2 3 2 3 2 2 1 2 1 2 1 2 1 <C 3 2
   130    12  1 2 3 2 3 2 2 1 2 1 2 1 2 <A 2 3 2
   131    11  1 2 3 2 3 2 2 1 2 1 2 1 <C 3 2 3 2
   132    10  1 2 3 2 3 2 2 1 2 1 2 <A 2 3 2 3 2
   133     9  1 2 3 2 3 2 2 1 2 1 <C 3 2 3 2 3 2
   134     8  1 2 3 2 3 2 2 1 2 <A 2 3 2 3 2 3 2
   135     7  1 2 3 2 3 2 2 1 <C 3 2 3 2 3 2 3 2
   136     6  1 2 3 2 3 2 2 <A 2 3 2 3 2 3 2 3 2
   137     5  1 2 3 2 3 2 <C 3 2 3 2 3 2 3 2 3 2
   138     4  1 2 3 2 3 <A 3 3 2 3 2 3 2 3 2 3 2
   139     5  1 2 3 2 1 C> 3 3 2 3 2 3 2 3 2 3 2
   140     6  1 2 3 2 1 2 B> 3 2 3 2 3 2 3 2 3 2
   141     7  1 2 3 2 1 2 3 C> 2 3 2 3 2 3 2 3 2
   142     6  1 2 3 2 1 2 3 <A 3 3 2 3 2 3 2 3 2
   143     7  1 2 3 2 1 2 1 C> 3 3 2 3 2 3 2 3 2
   144     8  1 2 3 2 1 2 1 2 B> 3 2 3 2 3 2 3 2
   145     9  1 2 3 2 1 2 1 2 3 C> 2 3 2 3 2 3 2
   146     8  1 2 3 2 1 2 1 2 3 <A 3 3 2 3 2 3 2
   147     9  1 2 3 2 1 2 1 2 1 C> 3 3 2 3 2 3 2
   148    10  1 2 3 2 1 2 1 2 1 2 B> 3 2 3 2 3 2
   149    11  1 2 3 2 1 2 1 2 1 2 3 C> 2 3 2 3 2
   150    10  1 2 3 2 1 2 1 2 1 2 3 <A 3 3 2 3 2
   151    11  1 2 3 2 1 2 1 2 1 2 1 C> 3 3 2 3 2
   152    12  1 2 3 2 1 2 1 2 1 2 1 2 B> 3 2 3 2
   153    13  1 2 3 2 1 2 1 2 1 2 1 2 3 C> 2 3 2
   154    12  1 2 3 2 1 2 1 2 1 2 1 2 3 <A 3 3 2
   155    13  1 2 3 2 1 2 1 2 1 2 1 2 1 C> 3 3 2
   156    14  1 2 3 2 1 2 1 2 1 2 1 2 1 2 B> 3 2
   157    15  1 2 3 2 1 2 1 2 1 2 1 2 1 2 3 C> 2
   158    14  1 2 3 2 1 2 1 2 1 2 1 2 1 2 3 <A 3
   159    15  1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 C> 3
   160    16  1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 B>
   161    17  1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 0 C>
   162    16  1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 0 <B 1
   163    17  1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 0 C> 1
   164    16  1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 0 <A 2
   165    17  1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 B> 2
   166    18  1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 C>
   167    17  1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <B 1
   168    18  1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 C> 1
   169    17  1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <A 2
   170    16  1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 <C 3 2
   171    15  1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 <A 2 3 2
   172    14  1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 <C 3 2 3 2
   173    13  1 2 3 2 1 2 1 2 1 2 1 2 1 2 <A 2 3 2 3 2
   174    12  1 2 3 2 1 2 1 2 1 2 1 2 1 <C 3 2 3 2 3 2
   175    11  1 2 3 2 1 2 1 2 1 2 1 2 <A 2 3 2 3 2 3 2
   176    10  1 2 3 2 1 2 1 2 1 2 1 <C 3 2 3 2 3 2 3 2
   177     9  1 2 3 2 1 2 1 2 1 2 <A 2 3 2 3 2 3 2 3 2
   178     8  1 2 3 2 1 2 1 2 1 <C 3 2 3 2 3 2 3 2 3 2
   179     7  1 2 3 2 1 2 1 2 <A 2 3 2 3 2 3 2 3 2 3 2
   180     6  1 2 3 2 1 2 1 <C 3 2 3 2 3 2 3 2 3 2 3 2
   181     5  1 2 3 2 1 2 <A 2 3 2 3 2 3 2 3 2 3 2 3 2
   182     4  1 2 3 2 1 <C 3 2 3 2 3 2 3 2 3 2 3 2 3 2
   183     3  1 2 3 2 <A 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2
   184     2  1 2 3 <C 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2
   185     3  1 2 2 B> 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2
   186     4  1 2 2 3 C> 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2
   187     3  1 2 2 3 <A 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2
   188     4  1 2 2 1 C> 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2
   189     5  1 2 2 1 2 B> 3 2 3 2 3 2 3 2 3 2 3 2 3 2
   190     6  1 2 2 1 2 3 C> 2 3 2 3 2 3 2 3 2 3 2 3 2
   191     5  1 2 2 1 2 3 <A 3 3 2 3 2 3 2 3 2 3 2 3 2
   192     6  1 2 2 1 2 1 C> 3 3 2 3 2 3 2 3 2 3 2 3 2
   193     7  1 2 2 1 2 1 2 B> 3 2 3 2 3 2 3 2 3 2 3 2
   194     8  1 2 2 1 2 1 2 3 C> 2 3 2 3 2 3 2 3 2 3 2
   195     7  1 2 2 1 2 1 2 3 <A 3 3 2 3 2 3 2 3 2 3 2
   196     8  1 2 2 1 2 1 2 1 C> 3 3 2 3 2 3 2 3 2 3 2
   197     9  1 2 2 1 2 1 2 1 2 B> 3 2 3 2 3 2 3 2 3 2
   198    10  1 2 2 1 2 1 2 1 2 3 C> 2 3 2 3 2 3 2 3 2
   199     9  1 2 2 1 2 1 2 1 2 3 <A 3 3 2 3 2 3 2 3 2
   200    10  1 2 2 1 2 1 2 1 2 1 C> 3 3 2 3 2 3 2 3 2

After 200 steps (201 lines): state = C.
Produced     19 nonzeros.
Tape index 10, scanned [-1 .. 18].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 0 on 1 on 2 on 3
A 54 7 2 28 17 0 12 10 36
B 51 11   21 19 1   6 28
C 95 14 31 22 28 2 4 20 14
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:13:45 CEST 2010