Comment: This TM produces >4.6x10^434 nonzeros in >7.6x10^868 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
A | 1RB | 0RB | 3LC | 1RC | 1 | right | B | 0 | right | B | 3 | left | C | 1 | right | C |
B | 0RC | 1RH | 2RC | 3RC | 0 | right | C | 1 | right | H | 2 | right | C | 3 | right | C |
C | 1LB | 2LA | 3LA | 2RB | 1 | left | B | 2 | left | A | 3 | left | A | 2 | right | B |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 2-bck-macro machine. The same TM as 2-bck-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 2 1 0 C> 3 1 1 0 <B 1 4 2 1 0 C> 1 5 1 1 0 <A 2 6 2 1 1 B> 2 7 3 1 1 2 C> 8 2 1 1 2 <B 1 9 3 1 1 2 C> 1 10 2 1 1 2 <A 2 11 1 1 1 <C 3 2 12 0 1 <A 2 3 2 13 1 B> 2 3 2 14 2 2 C> 3 2 15 3 2 2 B> 2 16 4 23 C> 17 3 23 <B 1 18 4 23 C> 1 19 3 23 <A 2 20 2 2 2 <C 3 2 21 1 2 <A 3 3 2 22 0 <C 33 2 23 -1 <B 1 33 2 24 0 C> 1 33 2 25 -1 <A 2 33 2 26 0 1 B> 2 33 2 27 1 1 2 C> 33 2 28 2 1 2 2 B> 3 3 2 29 3 1 2 2 3 C> 3 2 30 4 1 2 2 3 2 B> 2 31 5 1 2 2 3 2 2 C> 32 4 1 2 2 3 2 2 <B 1 33 5 1 2 2 3 2 2 C> 1 34 4 1 2 2 3 2 2 <A 2 35 3 1 2 2 3 2 <C 3 2 36 2 1 2 2 3 <A 3 3 2 37 3 1 2 2 1 C> 3 3 2 38 4 1 2 2 1 2 B> 3 2 39 5 1 2 2 1 2 3 C> 2 40 4 1 2 2 1 2 3 <A 3 41 5 1 2 2 1 2 1 C> 3 42 6 1 2 2 1 2 1 2 B> 43 7 1 2 2 1 2 1 2 0 C> 44 6 1 2 2 1 2 1 2 0 <B 1 45 7 1 2 2 1 2 1 2 0 C> 1 46 6 1 2 2 1 2 1 2 0 <A 2 47 7 1 2 2 1 2 1 2 1 B> 2 48 8 1 2 2 1 2 1 2 1 2 C> 49 7 1 2 2 1 2 1 2 1 2 <B 1 50 8 1 2 2 1 2 1 2 1 2 C> 1 51 7 1 2 2 1 2 1 2 1 2 <A 2 52 6 1 2 2 1 2 1 2 1 <C 3 2 53 5 1 2 2 1 2 1 2 <A 2 3 2 54 4 1 2 2 1 2 1 <C 3 2 3 2 55 3 1 2 2 1 2 <A 2 3 2 3 2 56 2 1 2 2 1 <C 3 2 3 2 3 2 57 1 1 2 2 <A 2 3 2 3 2 3 2 58 0 1 2 <C 3 2 3 2 3 2 3 2 59 -1 1 <A 3 3 2 3 2 3 2 3 2 60 0 B> 3 3 2 3 2 3 2 3 2 61 1 3 C> 3 2 3 2 3 2 3 2 62 2 3 2 B> 2 3 2 3 2 3 2 63 3 3 2 2 C> 3 2 3 2 3 2 64 4 3 23 B> 2 3 2 3 2 65 5 3 24 C> 3 2 3 2 66 6 3 25 B> 2 3 2 67 7 3 26 C> 3 2 68 8 3 27 B> 2 69 9 3 28 C> 70 8 3 28 <B 1 71 9 3 28 C> 1 72 8 3 28 <A 2 73 7 3 27 <C 3 2 74 6 3 26 <A 3 3 2 75 5 3 25 <C 33 2 76 4 3 24 <A 34 2 77 3 3 23 <C 35 2 78 2 3 2 2 <A 36 2 79 1 3 2 <C 37 2 80 0 3 <A 38 2 81 1 1 C> 38 2 82 2 1 2 B> 37 2 83 3 1 2 3 C> 36 2 84 4 1 2 3 2 B> 35 2 85 5 1 2 3 2 3 C> 34 2 86 6 1 2 3 2 3 2 B> 33 2 87 7 1 2 3 2 3 2 3 C> 3 3 2 88 8 1 2 3 2 3 2 3 2 B> 3 2 89 9 1 2 3 2 3 2 3 2 3 C> 2 90 8 1 2 3 2 3 2 3 2 3 <A 3 91 9 1 2 3 2 3 2 3 2 1 C> 3 92 10 1 2 3 2 3 2 3 2 1 2 B> 93 11 1 2 3 2 3 2 3 2 1 2 0 C> 94 10 1 2 3 2 3 2 3 2 1 2 0 <B 1 95 11 1 2 3 2 3 2 3 2 1 2 0 C> 1 96 10 1 2 3 2 3 2 3 2 1 2 0 <A 2 97 11 1 2 3 2 3 2 3 2 1 2 1 B> 2 98 12 1 2 3 2 3 2 3 2 1 2 1 2 C> 99 11 1 2 3 2 3 2 3 2 1 2 1 2 <B 1 100 12 1 2 3 2 3 2 3 2 1 2 1 2 C> 1 101 11 1 2 3 2 3 2 3 2 1 2 1 2 <A 2 102 10 1 2 3 2 3 2 3 2 1 2 1 <C 3 2 103 9 1 2 3 2 3 2 3 2 1 2 <A 2 3 2 104 8 1 2 3 2 3 2 3 2 1 <C 3 2 3 2 105 7 1 2 3 2 3 2 3 2 <A 2 3 2 3 2 106 6 1 2 3 2 3 2 3 <C 3 2 3 2 3 2 107 7 1 2 3 2 3 2 2 B> 3 2 3 2 3 2 108 8 1 2 3 2 3 2 2 3 C> 2 3 2 3 2 109 7 1 2 3 2 3 2 2 3 <A 3 3 2 3 2 110 8 1 2 3 2 3 2 2 1 C> 3 3 2 3 2 111 9 1 2 3 2 3 2 2 1 2 B> 3 2 3 2 112 10 1 2 3 2 3 2 2 1 2 3 C> 2 3 2 113 9 1 2 3 2 3 2 2 1 2 3 <A 3 3 2 114 10 1 2 3 2 3 2 2 1 2 1 C> 3 3 2 115 11 1 2 3 2 3 2 2 1 2 1 2 B> 3 2 116 12 1 2 3 2 3 2 2 1 2 1 2 3 C> 2 117 11 1 2 3 2 3 2 2 1 2 1 2 3 <A 3 118 12 1 2 3 2 3 2 2 1 2 1 2 1 C> 3 119 13 1 2 3 2 3 2 2 1 2 1 2 1 2 B> 120 14 1 2 3 2 3 2 2 1 2 1 2 1 2 0 C> 121 13 1 2 3 2 3 2 2 1 2 1 2 1 2 0 <B 1 122 14 1 2 3 2 3 2 2 1 2 1 2 1 2 0 C> 1 123 13 1 2 3 2 3 2 2 1 2 1 2 1 2 0 <A 2 124 14 1 2 3 2 3 2 2 1 2 1 2 1 2 1 B> 2 125 15 1 2 3 2 3 2 2 1 2 1 2 1 2 1 2 C> 126 14 1 2 3 2 3 2 2 1 2 1 2 1 2 1 2 <B 1 127 15 1 2 3 2 3 2 2 1 2 1 2 1 2 1 2 C> 1 128 14 1 2 3 2 3 2 2 1 2 1 2 1 2 1 2 <A 2 129 13 1 2 3 2 3 2 2 1 2 1 2 1 2 1 <C 3 2 130 12 1 2 3 2 3 2 2 1 2 1 2 1 2 <A 2 3 2 131 11 1 2 3 2 3 2 2 1 2 1 2 1 <C 3 2 3 2 132 10 1 2 3 2 3 2 2 1 2 1 2 <A 2 3 2 3 2 133 9 1 2 3 2 3 2 2 1 2 1 <C 3 2 3 2 3 2 134 8 1 2 3 2 3 2 2 1 2 <A 2 3 2 3 2 3 2 135 7 1 2 3 2 3 2 2 1 <C 3 2 3 2 3 2 3 2 136 6 1 2 3 2 3 2 2 <A 2 3 2 3 2 3 2 3 2 137 5 1 2 3 2 3 2 <C 3 2 3 2 3 2 3 2 3 2 138 4 1 2 3 2 3 <A 3 3 2 3 2 3 2 3 2 3 2 139 5 1 2 3 2 1 C> 3 3 2 3 2 3 2 3 2 3 2 140 6 1 2 3 2 1 2 B> 3 2 3 2 3 2 3 2 3 2 141 7 1 2 3 2 1 2 3 C> 2 3 2 3 2 3 2 3 2 142 6 1 2 3 2 1 2 3 <A 3 3 2 3 2 3 2 3 2 143 7 1 2 3 2 1 2 1 C> 3 3 2 3 2 3 2 3 2 144 8 1 2 3 2 1 2 1 2 B> 3 2 3 2 3 2 3 2 145 9 1 2 3 2 1 2 1 2 3 C> 2 3 2 3 2 3 2 146 8 1 2 3 2 1 2 1 2 3 <A 3 3 2 3 2 3 2 147 9 1 2 3 2 1 2 1 2 1 C> 3 3 2 3 2 3 2 148 10 1 2 3 2 1 2 1 2 1 2 B> 3 2 3 2 3 2 149 11 1 2 3 2 1 2 1 2 1 2 3 C> 2 3 2 3 2 150 10 1 2 3 2 1 2 1 2 1 2 3 <A 3 3 2 3 2 151 11 1 2 3 2 1 2 1 2 1 2 1 C> 3 3 2 3 2 152 12 1 2 3 2 1 2 1 2 1 2 1 2 B> 3 2 3 2 153 13 1 2 3 2 1 2 1 2 1 2 1 2 3 C> 2 3 2 154 12 1 2 3 2 1 2 1 2 1 2 1 2 3 <A 3 3 2 155 13 1 2 3 2 1 2 1 2 1 2 1 2 1 C> 3 3 2 156 14 1 2 3 2 1 2 1 2 1 2 1 2 1 2 B> 3 2 157 15 1 2 3 2 1 2 1 2 1 2 1 2 1 2 3 C> 2 158 14 1 2 3 2 1 2 1 2 1 2 1 2 1 2 3 <A 3 159 15 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 C> 3 160 16 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 161 17 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 0 C> 162 16 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 0 <B 1 163 17 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 0 C> 1 164 16 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 0 <A 2 165 17 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 B> 2 166 18 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 C> 167 17 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <B 1 168 18 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 C> 1 169 17 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <A 2 170 16 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 <C 3 2 171 15 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 <A 2 3 2 172 14 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 <C 3 2 3 2 173 13 1 2 3 2 1 2 1 2 1 2 1 2 1 2 <A 2 3 2 3 2 174 12 1 2 3 2 1 2 1 2 1 2 1 2 1 <C 3 2 3 2 3 2 175 11 1 2 3 2 1 2 1 2 1 2 1 2 <A 2 3 2 3 2 3 2 176 10 1 2 3 2 1 2 1 2 1 2 1 <C 3 2 3 2 3 2 3 2 177 9 1 2 3 2 1 2 1 2 1 2 <A 2 3 2 3 2 3 2 3 2 178 8 1 2 3 2 1 2 1 2 1 <C 3 2 3 2 3 2 3 2 3 2 179 7 1 2 3 2 1 2 1 2 <A 2 3 2 3 2 3 2 3 2 3 2 180 6 1 2 3 2 1 2 1 <C 3 2 3 2 3 2 3 2 3 2 3 2 181 5 1 2 3 2 1 2 <A 2 3 2 3 2 3 2 3 2 3 2 3 2 182 4 1 2 3 2 1 <C 3 2 3 2 3 2 3 2 3 2 3 2 3 2 183 3 1 2 3 2 <A 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 184 2 1 2 3 <C 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 185 3 1 2 2 B> 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 186 4 1 2 2 3 C> 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 187 3 1 2 2 3 <A 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2 188 4 1 2 2 1 C> 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2 189 5 1 2 2 1 2 B> 3 2 3 2 3 2 3 2 3 2 3 2 3 2 190 6 1 2 2 1 2 3 C> 2 3 2 3 2 3 2 3 2 3 2 3 2 191 5 1 2 2 1 2 3 <A 3 3 2 3 2 3 2 3 2 3 2 3 2 192 6 1 2 2 1 2 1 C> 3 3 2 3 2 3 2 3 2 3 2 3 2 193 7 1 2 2 1 2 1 2 B> 3 2 3 2 3 2 3 2 3 2 3 2 194 8 1 2 2 1 2 1 2 3 C> 2 3 2 3 2 3 2 3 2 3 2 195 7 1 2 2 1 2 1 2 3 <A 3 3 2 3 2 3 2 3 2 3 2 196 8 1 2 2 1 2 1 2 1 C> 3 3 2 3 2 3 2 3 2 3 2 197 9 1 2 2 1 2 1 2 1 2 B> 3 2 3 2 3 2 3 2 3 2 198 10 1 2 2 1 2 1 2 1 2 3 C> 2 3 2 3 2 3 2 3 2 199 9 1 2 2 1 2 1 2 1 2 3 <A 3 3 2 3 2 3 2 3 2 200 10 1 2 2 1 2 1 2 1 2 1 C> 3 3 2 3 2 3 2 3 2 After 200 steps (201 lines): state = C. Produced 19 nonzeros. Tape index 10, scanned [-1 .. 18].
State | Count | Execution count | First in step | ||||||
---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
A | 54 | 7 | 2 | 28 | 17 | 0 | 12 | 10 | 36 |
B | 51 | 11 | 21 | 19 | 1 | 6 | 28 | ||
C | 95 | 14 | 31 | 22 | 28 | 2 | 4 | 20 | 14 |