3-state 3-symbol #b (T.J. & S. Ligocki)

Comment: This TM produces 374,676,383 nonzeros in 119,112,334,170,342,540 steps.
Comment: This is the currently best known 3x3 TM

State on
0
on
1
on
2
on 0 on 1 on 2
Print Move Goto Print Move Goto Print Move Goto
A 1RB 2LA 1LC 1 right B 2 left A 1 left C
B 0LA 2RB 1LB 0 left A 2 right B 1 left B
C 1RH 1RA 1RC 1 right H 1 right A 1 right C
Transition table
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.

Pushing initial machine.
Pushing macro factor 2.
Pushing BCK machine.

Steps BasSteps BasTpos  Tape contents
    0        0       0  (00)A>
    1       12       2  01 (11)B>
    2       15      -1  01 <A(22)
    3       23      -3  <B(11) 12
    4       27      -5  <A(20) 11 12
    5       36      -2  01 (11)B> 11 12
    6       38       0  01 11 (22)B> 12
    7       43      -3  01 11 <B(11) 11
    8       46       0  01 12 (22)B> 11
    9       48       2  01 12 22 (22)B>
   10       57      -1  01 12 22 <A(22) 20
   11       65      -3  01 12 <A(22) 22 20
   12       69      -5  01 <A(22) 222 20
   13       77      -7  <B(11) 12 222 20
   14       81      -9  <A(20) 11 12 222 20
   15       90      -6  01 (11)B> 11 12 222 20
   16       92      -4  01 11 (22)B> 12 222 20
   17       97      -7  01 11 <B(11) 11 222 20
   18      100      -4  01 12 (22)B> 11 222 20
   19      102      -2  01 12 22 (22)B> 222 20
   20      105      -5  01 12 22 <B(11) 12 22 20
   21      107      -7  01 12 <B(11) 11 12 22 20
   22      112      -4  01 22 (22)B> 11 12 22 20
   23      114      -2  01 222 (22)B> 12 22 20
   24      119      -5  01 222 <B(11) 11 22 20
   25      123      -9  01 <B(11) 113 22 20
   26      126      -6  02 (22)B> 113 22 20
   27      132       0  02 223 (22)B> 22 20
   28      135      -3  02 223 <B(11) 12 20
   29      141      -9  02 <B(11) 113 12 20
   30      143     -11  <A(01) 114 12 20
   31      156      -8  11 (12)B> 114 12 20
   32      158      -6  11 12 (22)B> 113 12 20
   33      164       0  11 12 223 (22)B> 12 20
   34      169      -3  11 12 223 <B(11) 11 20
   35      175      -9  11 12 <B(11) 114 20
   36      180      -6  11 22 (22)B> 114 20
   37      188       2  11 225 (22)B> 20
   38      191      -1  11 225 <B(11) 10
   39      201     -11  11 <B(11) 115 10
   40      204      -8  12 (22)B> 115 10
   41      214       2  12 225 (22)B> 10
   42      220       4  12 225 21 (11)B>
   43      223       1  12 225 21 <A(22)
   44      225      -1  12 225 <C(12) 22
   45      265     -11  12 <C(12) 226
   46      273     -13  <A(22) 227
   47      281     -15  <A(01) 11 227
   48      294     -12  11 (12)B> 11 227
   49      296     -10  11 12 (22)B> 227
   50      299     -13  11 12 <B(11) 12 226
   51      304     -10  11 22 (22)B> 12 226
   52      309     -13  11 22 <B(11) 11 226
   53      311     -15  11 <B(11) 112 226
   54      314     -12  12 (22)B> 112 226
   55      318      -8  12 222 (22)B> 226
   56      321     -11  12 222 <B(11) 12 225
   57      325     -15  12 <B(11) 112 12 225
   58      330     -12  22 (22)B> 112 12 225
   59      334      -8  223 (22)B> 12 225
   60      339     -11  223 <B(11) 11 225
   61      345     -17  <B(11) 114 225
   62      349     -19  <A(20) 115 225
   63      358     -16  01 (11)B> 115 225
   64      360     -14  01 11 (22)B> 114 225
   65      368      -6  01 11 224 (22)B> 225
   66      371      -9  01 11 224 <B(11) 12 224
   67      379     -17  01 11 <B(11) 114 12 224
   68      382     -14  01 12 (22)B> 114 12 224
   69      390      -6  01 12 224 (22)B> 12 224
   70      395      -9  01 12 224 <B(11) 11 224
   71      403     -17  01 12 <B(11) 115 224
   72      408     -14  01 22 (22)B> 115 224
   73      418      -4  01 226 (22)B> 224
   74      421      -7  01 226 <B(11) 12 223
   75      433     -19  01 <B(11) 116 12 223
   76      436     -16  02 (22)B> 116 12 223
   77      448      -4  02 226 (22)B> 12 223
   78      453      -7  02 226 <B(11) 11 223
   79      465     -19  02 <B(11) 117 223
   80      467     -21  <A(01) 118 223
   81      480     -18  11 (12)B> 118 223
   82      482     -16  11 12 (22)B> 117 223
   83      496      -2  11 12 227 (22)B> 223
   84      499      -5  11 12 227 <B(11) 12 222
   85      513     -19  11 12 <B(11) 117 12 222
   86      518     -16  11 22 (22)B> 117 12 222
   87      532      -2  11 228 (22)B> 12 222
   88      537      -5  11 228 <B(11) 11 222
   89      553     -21  11 <B(11) 119 222
   90      556     -18  12 (22)B> 119 222
   91      574       0  12 229 (22)B> 222
   92      577      -3  12 229 <B(11) 12 22
   93      595     -21  12 <B(11) 119 12 22
   94      600     -18  22 (22)B> 119 12 22
   95      618       0  2210 (22)B> 12 22
   96      623      -3  2210 <B(11) 11 22
   97      643     -23  <B(11) 1111 22
   98      647     -25  <A(20) 1112 22
   99      656     -22  01 (11)B> 1112 22
  100      658     -20  01 11 (22)B> 1111 22
  101      680       2  01 11 2211 (22)B> 22
  102      683      -1  01 11 2211 <B(11) 12
  103      705     -23  01 11 <B(11) 1111 12
  104      708     -20  01 12 (22)B> 1111 12
  105      730       2  01 12 2211 (22)B> 12
  106      735      -1  01 12 2211 <B(11) 11
  107      757     -23  01 12 <B(11) 1112
  108      762     -20  01 22 (22)B> 1112
  109      786       4  01 2213 (22)B>
  110      795       1  01 2213 <A(22) 20
  111      899     -25  01 <A(22) 2213 20
  112      907     -27  <B(11) 12 2213 20
  113      911     -29  <A(20) 11 12 2213 20
  114      920     -26  01 (11)B> 11 12 2213 20
  115      922     -24  01 11 (22)B> 12 2213 20
  116      927     -27  01 11 <B(11) 11 2213 20
  117      930     -24  01 12 (22)B> 11 2213 20
  118      932     -22  01 12 22 (22)B> 2213 20
  119      935     -25  01 12 22 <B(11) 12 2212 20
  120      937     -27  01 12 <B(11) 11 12 2212 20
  121      942     -24  01 22 (22)B> 11 12 2212 20
  122      944     -22  01 222 (22)B> 12 2212 20
  123      949     -25  01 222 <B(11) 11 2212 20
  124      953     -29  01 <B(11) 113 2212 20
  125      956     -26  02 (22)B> 113 2212 20
  126      962     -20  02 223 (22)B> 2212 20
  127      965     -23  02 223 <B(11) 12 2211 20
  128      971     -29  02 <B(11) 113 12 2211 20
  129      973     -31  <A(01) 114 12 2211 20
  130      986     -28  11 (12)B> 114 12 2211 20
  131      988     -26  11 12 (22)B> 113 12 2211 20
  132      994     -20  11 12 223 (22)B> 12 2211 20
  133      999     -23  11 12 223 <B(11) 11 2211 20
  134     1005     -29  11 12 <B(11) 114 2211 20
  135     1010     -26  11 22 (22)B> 114 2211 20
  136     1018     -18  11 225 (22)B> 2211 20
  137     1021     -21  11 225 <B(11) 12 2210 20
  138     1031     -31  11 <B(11) 115 12 2210 20
  139     1034     -28  12 (22)B> 115 12 2210 20
  140     1044     -18  12 225 (22)B> 12 2210 20
  141     1049     -21  12 225 <B(11) 11 2210 20
  142     1059     -31  12 <B(11) 116 2210 20
  143     1064     -28  22 (22)B> 116 2210 20
  144     1076     -16  227 (22)B> 2210 20
  145     1079     -19  227 <B(11) 12 229 20
  146     1093     -33  <B(11) 117 12 229 20
  147     1097     -35  <A(20) 118 12 229 20
  148     1106     -32  01 (11)B> 118 12 229 20
  149     1108     -30  01 11 (22)B> 117 12 229 20
  150     1122     -16  01 11 227 (22)B> 12 229 20
  151     1127     -19  01 11 227 <B(11) 11 229 20
  152     1141     -33  01 11 <B(11) 118 229 20
  153     1144     -30  01 12 (22)B> 118 229 20
  154     1160     -14  01 12 228 (22)B> 229 20
  155     1163     -17  01 12 228 <B(11) 12 228 20
  156     1179     -33  01 12 <B(11) 118 12 228 20
  157     1184     -30  01 22 (22)B> 118 12 228 20
  158     1200     -14  01 229 (22)B> 12 228 20
  159     1205     -17  01 229 <B(11) 11 228 20
  160     1223     -35  01 <B(11) 1110 228 20
  161     1226     -32  02 (22)B> 1110 228 20
  162     1246     -12  02 2210 (22)B> 228 20
  163     1249     -15  02 2210 <B(11) 12 227 20
  164     1269     -35  02 <B(11) 1110 12 227 20
  165     1271     -37  <A(01) 1111 12 227 20
  166     1284     -34  11 (12)B> 1111 12 227 20
  167     1286     -32  11 12 (22)B> 1110 12 227 20
  168     1306     -12  11 12 2210 (22)B> 12 227 20
  169     1311     -15  11 12 2210 <B(11) 11 227 20
  170     1331     -35  11 12 <B(11) 1111 227 20
  171     1336     -32  11 22 (22)B> 1111 227 20
  172     1358     -10  11 2212 (22)B> 227 20
  173     1361     -13  11 2212 <B(11) 12 226 20
  174     1385     -37  11 <B(11) 1112 12 226 20
  175     1388     -34  12 (22)B> 1112 12 226 20
  176     1412     -10  12 2212 (22)B> 12 226 20
  177     1417     -13  12 2212 <B(11) 11 226 20
  178     1441     -37  12 <B(11) 1113 226 20
  179     1446     -34  22 (22)B> 1113 226 20
  180     1472      -8  2214 (22)B> 226 20
  181     1475     -11  2214 <B(11) 12 225 20
  182     1503     -39  <B(11) 1114 12 225 20
  183     1507     -41  <A(20) 1115 12 225 20
  184     1516     -38  01 (11)B> 1115 12 225 20
  185     1518     -36  01 11 (22)B> 1114 12 225 20
  186     1546      -8  01 11 2214 (22)B> 12 225 20
  187     1551     -11  01 11 2214 <B(11) 11 225 20
  188     1579     -39  01 11 <B(11) 1115 225 20
  189     1582     -36  01 12 (22)B> 1115 225 20
  190     1612      -6  01 12 2215 (22)B> 225 20
  191     1615      -9  01 12 2215 <B(11) 12 224 20
  192     1645     -39  01 12 <B(11) 1115 12 224 20
  193     1650     -36  01 22 (22)B> 1115 12 224 20
  194     1680      -6  01 2216 (22)B> 12 224 20
  195     1685      -9  01 2216 <B(11) 11 224 20
  196     1717     -41  01 <B(11) 1117 224 20
  197     1720     -38  02 (22)B> 1117 224 20
  198     1754      -4  02 2217 (22)B> 224 20
  199     1757      -7  02 2217 <B(11) 12 223 20
  200     1791     -41  02 <B(11) 1117 12 223 20

Lines:       201
Top steps:   200
Macro steps: 200
Basic steps: 1791
Tape index:  -41
nonzeros:    46
log10(nonzeros):    1.663
log10(steps   ):    3.253

The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Input to awk program:
    gohalt 1
    nbs 3
    T 3-state 3-symbol #b (T.J. & S. Ligocki)
    : 374,676,383 119,112,334,170,342,540
    C This is the currently best known 3x3 TM
    5T  1RB 2LA 1LC  0LA 2RB 1LB  1RH 1RA 1RC
    L 26
    M	201
    pref	sim
    machv Lig33_b  	just simple
    machv Lig33_b-r	with repetitions reduced
    machv Lig33_b-1	with tape symbol exponents
    machv Lig33_b-m	as 2-bck-macro machine
    machv Lig33_b-a	as 2-bck-macro machine with pure additive config-TRs
    iam	Lig33_b-m
    mtype	2 0
    mmtyp	1
    r	1
    H	1
    mac	0
    E	2
    sympr	
    HM	1
    date	Tue Jul  6 22:13:27 CEST 2010
    edate	Tue Jul  6 22:13:28 CEST 2010
    bnspeed	1

Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:13:27 CEST 2010
Ready: Tue Jul 6 22:13:28 CEST 2010