Comment: This TM produces 374,676,383 nonzeros in 119,112,334,170,342,540 steps. Comment: This is the currently best known 3x3 TM Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | |||||||
| A | 1RB | 2LA | 1LC | 1 | right | B | 2 | left | A | 1 | left | C |
| B | 0LA | 2RB | 1LB | 0 | left | A | 2 | right | B | 1 | left | B |
| C | 1RH | 1RA | 1RC | 1 | right | H | 1 | right | A | 1 | right | C |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 2-bck-macro machine.
The same TM as 2-bck-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <A
3 -1 <A 2
4 0 1 B> 2
5 -1 1 <B 1
6 0 2 B> 1
7 1 2 2 B>
8 0 2 2 <A
9 -1 2 <C 1
10 0 1 C> 1
11 1 1 1 A>
12 2 13 B>
13 1 13 <A
+ 16 -2 <A 23
17 -1 1 B> 23
18 -2 1 <B 1 2 2
19 -1 2 B> 1 2 2
20 0 2 2 B> 2 2
21 -1 2 2 <B 1 2
+ 23 -3 <B 13 2
24 -4 <A 0 13 2
25 -3 1 B> 0 13 2
26 -4 1 <A 0 13 2
27 -5 <A 2 0 13 2
28 -4 1 B> 2 0 13 2
29 -5 1 <B 1 0 13 2
30 -4 2 B> 1 0 13 2
31 -3 2 2 B> 0 13 2
32 -4 2 2 <A 0 13 2
33 -5 2 <C 1 0 13 2
34 -4 1 C> 1 0 13 2
35 -3 1 1 A> 0 13 2
36 -2 13 B> 13 2
+ 39 1 13 23 B> 2
40 0 13 23 <B 1
+ 43 -3 13 <B 14
44 -2 1 1 2 B> 14
+ 48 2 1 1 25 B>
49 1 1 1 25 <A
50 0 1 1 24 <C 1
51 1 1 1 23 1 C> 1
52 2 1 1 23 1 1 A>
53 3 1 1 23 13 B>
54 2 1 1 23 13 <A
+ 57 -1 1 1 23 <A 23
58 -2 1 1 2 2 <C 1 23
59 -1 1 1 2 1 C> 1 23
60 0 1 1 2 1 1 A> 23
61 -1 1 1 2 1 1 <C 1 2 2
62 0 1 1 2 1 1 A> 1 2 2
63 -1 1 1 2 1 1 <A 23
+ 65 -3 1 1 2 <A 25
66 -4 1 1 <C 1 25
67 -3 1 1 A> 1 25
68 -4 1 1 <A 26
+ 70 -6 <A 28
71 -5 1 B> 28
72 -6 1 <B 1 27
73 -5 2 B> 1 27
74 -4 2 2 B> 27
75 -5 2 2 <B 1 26
+ 77 -7 <B 13 26
78 -8 <A 0 13 26
79 -7 1 B> 0 13 26
80 -8 1 <A 0 13 26
81 -9 <A 2 0 13 26
82 -8 1 B> 2 0 13 26
83 -9 1 <B 1 0 13 26
84 -8 2 B> 1 0 13 26
85 -7 2 2 B> 0 13 26
86 -8 2 2 <A 0 13 26
87 -9 2 <C 1 0 13 26
88 -8 1 C> 1 0 13 26
89 -7 1 1 A> 0 13 26
90 -6 13 B> 13 26
+ 93 -3 13 23 B> 26
94 -4 13 23 <B 1 25
+ 97 -7 13 <B 14 25
98 -6 1 1 2 B> 14 25
+ 102 -2 1 1 25 B> 25
103 -3 1 1 25 <B 1 24
+ 108 -8 1 1 <B 16 24
109 -7 1 2 B> 16 24
+ 115 -1 1 27 B> 24
116 -2 1 27 <B 1 23
+ 123 -9 1 <B 18 23
124 -8 2 B> 18 23
+ 132 0 29 B> 23
133 -1 29 <B 1 2 2
+ 142 -10 <B 110 2 2
143 -11 <A 0 110 2 2
144 -10 1 B> 0 110 2 2
145 -11 1 <A 0 110 2 2
146 -12 <A 2 0 110 2 2
147 -11 1 B> 2 0 110 2 2
148 -12 1 <B 1 0 110 2 2
149 -11 2 B> 1 0 110 2 2
150 -10 2 2 B> 0 110 2 2
151 -11 2 2 <A 0 110 2 2
152 -12 2 <C 1 0 110 2 2
153 -11 1 C> 1 0 110 2 2
154 -10 1 1 A> 0 110 2 2
155 -9 13 B> 110 2 2
+ 165 1 13 210 B> 2 2
166 0 13 210 <B 1 2
+ 176 -10 13 <B 111 2
177 -9 1 1 2 B> 111 2
+ 188 2 1 1 212 B> 2
189 1 1 1 212 <B 1
+ 201 -11 1 1 <B 113
202 -10 1 2 B> 113
+ 215 3 1 214 B>
216 2 1 214 <A
217 1 1 213 <C 1
218 2 1 212 1 C> 1
219 3 1 212 1 1 A>
220 4 1 212 13 B>
221 3 1 212 13 <A
+ 224 0 1 212 <A 23
225 -1 1 211 <C 1 23
226 0 1 210 1 C> 1 23
227 1 1 210 1 1 A> 23
228 0 1 210 1 1 <C 1 2 2
229 1 1 210 1 1 A> 1 2 2
230 0 1 210 1 1 <A 23
+ 232 -2 1 210 <A 25
233 -3 1 29 <C 1 25
234 -2 1 28 1 C> 1 25
235 -1 1 28 1 1 A> 25
236 -2 1 28 1 1 <C 1 24
237 -1 1 28 1 1 A> 1 24
238 -2 1 28 1 1 <A 25
+ 240 -4 1 28 <A 27
241 -5 1 27 <C 1 27
242 -4 1 26 1 C> 1 27
243 -3 1 26 1 1 A> 27
244 -4 1 26 1 1 <C 1 26
245 -3 1 26 1 1 A> 1 26
246 -4 1 26 1 1 <A 27
+ 248 -6 1 26 <A 29
249 -7 1 25 <C 1 29
250 -6 1 24 1 C> 1 29
251 -5 1 24 1 1 A> 29
252 -6 1 24 1 1 <C 1 28
253 -5 1 24 1 1 A> 1 28
254 -6 1 24 1 1 <A 29
+ 256 -8 1 24 <A 211
257 -9 1 23 <C 1 211
258 -8 1 2 2 1 C> 1 211
259 -7 1 2 2 1 1 A> 211
260 -8 1 2 2 1 1 <C 1 210
261 -7 1 2 2 1 1 A> 1 210
262 -8 1 2 2 1 1 <A 211
+ 264 -10 1 2 2 <A 213
265 -11 1 2 <C 1 213
266 -10 1 1 C> 1 213
267 -9 13 A> 213
268 -10 13 <C 1 212
269 -9 13 A> 1 212
270 -10 13 <A 213
+ 273 -13 <A 216
274 -12 1 B> 216
275 -13 1 <B 1 215
276 -12 2 B> 1 215
277 -11 2 2 B> 215
278 -12 2 2 <B 1 214
+ 280 -14 <B 13 214
281 -15 <A 0 13 214
282 -14 1 B> 0 13 214
283 -15 1 <A 0 13 214
284 -16 <A 2 0 13 214
285 -15 1 B> 2 0 13 214
286 -16 1 <B 1 0 13 214
287 -15 2 B> 1 0 13 214
288 -14 2 2 B> 0 13 214
289 -15 2 2 <A 0 13 214
290 -16 2 <C 1 0 13 214
291 -15 1 C> 1 0 13 214
292 -14 1 1 A> 0 13 214
293 -13 13 B> 13 214
+ 296 -10 13 23 B> 214
297 -11 13 23 <B 1 213
+ 300 -14 13 <B 14 213
301 -13 1 1 2 B> 14 213
+ 305 -9 1 1 25 B> 213
306 -10 1 1 25 <B 1 212
+ 311 -15 1 1 <B 16 212
312 -14 1 2 B> 16 212
+ 318 -8 1 27 B> 212
319 -9 1 27 <B 1 211
+ 326 -16 1 <B 18 211
327 -15 2 B> 18 211
+ 335 -7 29 B> 211
336 -8 29 <B 1 210
+ 345 -17 <B 110 210
346 -18 <A 0 110 210
347 -17 1 B> 0 110 210
348 -18 1 <A 0 110 210
349 -19 <A 2 0 110 210
350 -18 1 B> 2 0 110 210
After 350 steps (201 lines): state = B.
Produced 22 nonzeros.
Tape index -18, scanned [-19 .. 4].
| State | Count | Execution count | First in step | ||||
|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
| A | 84 | 22 | 40 | 22 | 0 | 2 | 8 |
| B | 230 | 21 | 108 | 101 | 1 | 5 | 4 |
| C | 36 | 22 | 14 | 10 | 9 | ||