Comment: This TM produces 374,676,383 nonzeros in 119,112,334,170,342,540 steps. Comment: This is the currently best known 3x3 TM Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | |||||||
A | 1RB | 2LA | 1LC | 1 | right | B | 2 | left | A | 1 | left | C |
B | 0LA | 2RB | 1LB | 0 | left | A | 2 | right | B | 1 | left | B |
C | 1RH | 1RA | 1RC | 1 | right | H | 1 | right | A | 1 | right | C |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 2-bck-macro machine. The same TM as 2-bck-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <A 3 -1 <A 2 4 0 1 B> 2 5 -1 1 <B 1 6 0 2 B> 1 7 1 2 2 B> 8 0 2 2 <A 9 -1 2 <C 1 10 0 1 C> 1 11 1 1 1 A> 12 2 13 B> 13 1 13 <A + 16 -2 <A 23 17 -1 1 B> 23 18 -2 1 <B 1 2 2 19 -1 2 B> 1 2 2 20 0 2 2 B> 2 2 21 -1 2 2 <B 1 2 + 23 -3 <B 13 2 24 -4 <A 0 13 2 25 -3 1 B> 0 13 2 26 -4 1 <A 0 13 2 27 -5 <A 2 0 13 2 28 -4 1 B> 2 0 13 2 29 -5 1 <B 1 0 13 2 30 -4 2 B> 1 0 13 2 31 -3 2 2 B> 0 13 2 32 -4 2 2 <A 0 13 2 33 -5 2 <C 1 0 13 2 34 -4 1 C> 1 0 13 2 35 -3 1 1 A> 0 13 2 36 -2 13 B> 13 2 + 39 1 13 23 B> 2 40 0 13 23 <B 1 + 43 -3 13 <B 14 44 -2 1 1 2 B> 14 + 48 2 1 1 25 B> 49 1 1 1 25 <A 50 0 1 1 24 <C 1 51 1 1 1 23 1 C> 1 52 2 1 1 23 1 1 A> 53 3 1 1 23 13 B> 54 2 1 1 23 13 <A + 57 -1 1 1 23 <A 23 58 -2 1 1 2 2 <C 1 23 59 -1 1 1 2 1 C> 1 23 60 0 1 1 2 1 1 A> 23 61 -1 1 1 2 1 1 <C 1 2 2 62 0 1 1 2 1 1 A> 1 2 2 63 -1 1 1 2 1 1 <A 23 + 65 -3 1 1 2 <A 25 66 -4 1 1 <C 1 25 67 -3 1 1 A> 1 25 68 -4 1 1 <A 26 + 70 -6 <A 28 71 -5 1 B> 28 72 -6 1 <B 1 27 73 -5 2 B> 1 27 74 -4 2 2 B> 27 75 -5 2 2 <B 1 26 + 77 -7 <B 13 26 78 -8 <A 0 13 26 79 -7 1 B> 0 13 26 80 -8 1 <A 0 13 26 81 -9 <A 2 0 13 26 82 -8 1 B> 2 0 13 26 83 -9 1 <B 1 0 13 26 84 -8 2 B> 1 0 13 26 85 -7 2 2 B> 0 13 26 86 -8 2 2 <A 0 13 26 87 -9 2 <C 1 0 13 26 88 -8 1 C> 1 0 13 26 89 -7 1 1 A> 0 13 26 90 -6 13 B> 13 26 + 93 -3 13 23 B> 26 94 -4 13 23 <B 1 25 + 97 -7 13 <B 14 25 98 -6 1 1 2 B> 14 25 + 102 -2 1 1 25 B> 25 103 -3 1 1 25 <B 1 24 + 108 -8 1 1 <B 16 24 109 -7 1 2 B> 16 24 + 115 -1 1 27 B> 24 116 -2 1 27 <B 1 23 + 123 -9 1 <B 18 23 124 -8 2 B> 18 23 + 132 0 29 B> 23 133 -1 29 <B 1 2 2 + 142 -10 <B 110 2 2 143 -11 <A 0 110 2 2 144 -10 1 B> 0 110 2 2 145 -11 1 <A 0 110 2 2 146 -12 <A 2 0 110 2 2 147 -11 1 B> 2 0 110 2 2 148 -12 1 <B 1 0 110 2 2 149 -11 2 B> 1 0 110 2 2 150 -10 2 2 B> 0 110 2 2 151 -11 2 2 <A 0 110 2 2 152 -12 2 <C 1 0 110 2 2 153 -11 1 C> 1 0 110 2 2 154 -10 1 1 A> 0 110 2 2 155 -9 13 B> 110 2 2 + 165 1 13 210 B> 2 2 166 0 13 210 <B 1 2 + 176 -10 13 <B 111 2 177 -9 1 1 2 B> 111 2 + 188 2 1 1 212 B> 2 189 1 1 1 212 <B 1 + 201 -11 1 1 <B 113 202 -10 1 2 B> 113 + 215 3 1 214 B> 216 2 1 214 <A 217 1 1 213 <C 1 218 2 1 212 1 C> 1 219 3 1 212 1 1 A> 220 4 1 212 13 B> 221 3 1 212 13 <A + 224 0 1 212 <A 23 225 -1 1 211 <C 1 23 226 0 1 210 1 C> 1 23 227 1 1 210 1 1 A> 23 228 0 1 210 1 1 <C 1 2 2 229 1 1 210 1 1 A> 1 2 2 230 0 1 210 1 1 <A 23 + 232 -2 1 210 <A 25 233 -3 1 29 <C 1 25 234 -2 1 28 1 C> 1 25 235 -1 1 28 1 1 A> 25 236 -2 1 28 1 1 <C 1 24 237 -1 1 28 1 1 A> 1 24 238 -2 1 28 1 1 <A 25 + 240 -4 1 28 <A 27 241 -5 1 27 <C 1 27 242 -4 1 26 1 C> 1 27 243 -3 1 26 1 1 A> 27 244 -4 1 26 1 1 <C 1 26 245 -3 1 26 1 1 A> 1 26 246 -4 1 26 1 1 <A 27 + 248 -6 1 26 <A 29 249 -7 1 25 <C 1 29 250 -6 1 24 1 C> 1 29 251 -5 1 24 1 1 A> 29 252 -6 1 24 1 1 <C 1 28 253 -5 1 24 1 1 A> 1 28 254 -6 1 24 1 1 <A 29 + 256 -8 1 24 <A 211 257 -9 1 23 <C 1 211 258 -8 1 2 2 1 C> 1 211 259 -7 1 2 2 1 1 A> 211 260 -8 1 2 2 1 1 <C 1 210 261 -7 1 2 2 1 1 A> 1 210 262 -8 1 2 2 1 1 <A 211 + 264 -10 1 2 2 <A 213 265 -11 1 2 <C 1 213 266 -10 1 1 C> 1 213 267 -9 13 A> 213 268 -10 13 <C 1 212 269 -9 13 A> 1 212 270 -10 13 <A 213 + 273 -13 <A 216 274 -12 1 B> 216 275 -13 1 <B 1 215 276 -12 2 B> 1 215 277 -11 2 2 B> 215 278 -12 2 2 <B 1 214 + 280 -14 <B 13 214 281 -15 <A 0 13 214 282 -14 1 B> 0 13 214 283 -15 1 <A 0 13 214 284 -16 <A 2 0 13 214 285 -15 1 B> 2 0 13 214 286 -16 1 <B 1 0 13 214 287 -15 2 B> 1 0 13 214 288 -14 2 2 B> 0 13 214 289 -15 2 2 <A 0 13 214 290 -16 2 <C 1 0 13 214 291 -15 1 C> 1 0 13 214 292 -14 1 1 A> 0 13 214 293 -13 13 B> 13 214 + 296 -10 13 23 B> 214 297 -11 13 23 <B 1 213 + 300 -14 13 <B 14 213 301 -13 1 1 2 B> 14 213 + 305 -9 1 1 25 B> 213 306 -10 1 1 25 <B 1 212 + 311 -15 1 1 <B 16 212 312 -14 1 2 B> 16 212 + 318 -8 1 27 B> 212 319 -9 1 27 <B 1 211 + 326 -16 1 <B 18 211 327 -15 2 B> 18 211 + 335 -7 29 B> 211 336 -8 29 <B 1 210 + 345 -17 <B 110 210 346 -18 <A 0 110 210 347 -17 1 B> 0 110 210 348 -18 1 <A 0 110 210 349 -19 <A 2 0 110 210 350 -18 1 B> 2 0 110 210 After 350 steps (201 lines): state = B. Produced 22 nonzeros. Tape index -18, scanned [-19 .. 4].
State | Count | Execution count | First in step | ||||
---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
A | 84 | 22 | 40 | 22 | 0 | 2 | 8 |
B | 230 | 21 | 108 | 101 | 1 | 5 | 4 |
C | 36 | 22 | 14 | 10 | 9 |