3-state 3-symbol #a (T.J. & S. Ligocki)

Comment: This TM produces 95,524,079 nonzeros in 4,345,166,620,336,565 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on 0 on 1 on 2
Print Move Goto Print Move Goto Print Move Goto
A 1RB 2RC 1LA 1 right B 2 right C 1 left A
B 2LA 1RB 1RH 2 left A 1 right B 1 right H
C 2RB 2RA 1LC 2 right B 2 right A 1 left C
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-macro machine.
The same TM as 2-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . 0
     1    1 B . . 10
     2    0 A . . 12
     3    1 C . . 22
     4    0 C . . 21
     5   -1 C . .011
     6    0 B . .211
     7    1 B . .211
     8    2 B . .2110
     9    1 A . .2112
    10    2 C . .2122
    11    1 C . .2121
    12    0 C . .2111
    13    1 A . .2211
    14    2 C . .2221
    15    3 A . .22220
    16    4 B . .222210
    17    3 A . .222212
    18    4 C . .222222
    19    3 C . .222221
    20    2 C . .222211
    21    1 C . .222111
    22    0 C . .221111
    23   -1 C . .211111
    24   -2 C . 0111111
    25   -1 B . 2111111
    26    0 B . 2111111
    27    1 B . 2111111
    28    2 B . 2111111
    29    3 B . 2111111
    30    4 B . 2111111
    31    5 B . 21111110
    32    4 A . 21111112
    33    5 C . 21111122
    34    4 C . 21111121
    35    3 C . 21111111
    36    4 A . 21111211
    37    5 C . 21111221
    38    6 A . 211112220
    39    7 B . 2111122210
    40    6 A . 2111122212
    41    7 C . 2111122222
    42    6 C . 2111122221
    43    5 C . 2111122211
    44    4 C . 2111122111
    45    3 C . 2111121111
    46    2 C . 2111111111
    47    3 A . 2111211111
    48    4 C . 2111221111
    49    5 A . 2111222111
    50    6 C . 2111222211
    51    7 A . 2111222221
    52    8 C . 21112222220
    53    9 B . 211122222220
    54    8 A . 211122222222
    55    7 A . 211122222212
    56    6 A . 211122222112
    57    5 A . 211122221112
    58    4 A . 211122211112
    59    3 A . 211122111112
    60    2 A . 211121111112
    61    1 A . 211111111112
    62    2 C . 211211111112
    63    3 A . 211221111112
    64    4 C . 211222111112
    65    5 A . 211222211112
    66    6 C . 211222221112
    67    7 A . 211222222112
    68    8 C . 211222222212
    69    9 A . 211222222222
    70    8 A . 211222222221
    71    7 A . 211222222211
    72    6 A . 211222222111
    73    5 A . 211222221111
    74    4 A . 211222211111
    75    3 A . 211222111111
    76    2 A . 211221111111
    77    1 A . 211211111111
    78    0 A . 211111111111
    79    1 C . 212111111111
    80    2 A . 212211111111
    81    3 C . 212221111111
    82    4 A . 212222111111
    83    5 C . 212222211111
    84    6 A . 212222221111
    85    7 C . 212222222111
    86    8 A . 212222222211
    87    9 C . 212222222221
    88   10 A . 2122222222220
    89   11 B . 21222222222210
    90   10 A . 21222222222212
    91   11 C . 21222222222222
    92   10 C . 21222222222221
    93    9 C . 21222222222211
    94    8 C . 21222222222111
    95    7 C . 21222222221111
    96    6 C . 21222222211111
    97    5 C . 21222222111111
    98    4 C . 21222221111111
    99    3 C . 21222211111111
   100    2 C . 21222111111111
   101    1 C . 21221111111111
   102    0 C . 21211111111111
   103   -1 C . 21111111111111
   104    0 A . 22111111111111
   105    1 C . 22211111111111
   106    2 A . 22221111111111
   107    3 C . 22222111111111
   108    4 A . 22222211111111
   109    5 C . 22222221111111
   110    6 A . 22222222111111
   111    7 C . 22222222211111
   112    8 A . 22222222221111
   113    9 C . 22222222222111
   114   10 A . 22222222222211
   115   11 C . 22222222222221
   116   12 A . 222222222222220
   117   13 B . 2222222222222210
   118   12 A . 2222222222222212
   119   13 C . 2222222222222222
   120   12 C . 2222222222222221
   121   11 C . 2222222222222211
   122   10 C . 2222222222222111
   123    9 C . 2222222222221111
   124    8 C . 2222222222211111
   125    7 C . 2222222222111111
   126    6 C . 2222222221111111
   127    5 C . 2222222211111111
   128    4 C . 2222222111111111
   129    3 C . 2222221111111111
   130    2 C . 2222211111111111
   131    1 C . 2222111111111111
   132    0 C . 2221111111111111
   133   -1 C . 2211111111111111
   134   -2 C . 2111111111111111
   135   -3 C .01111111111111111
   136   -2 B .21111111111111111
   137   -1 B .21111111111111111
   138    0 B .21111111111111111
   139    1 B .21111111111111111
   140    2 B .21111111111111111
   141    3 B .21111111111111111
   142    4 B .21111111111111111
   143    5 B .21111111111111111
   144    6 B .21111111111111111
   145    7 B .21111111111111111
   146    8 B .21111111111111111
   147    9 B .21111111111111111
   148   10 B .21111111111111111
   149   11 B .21111111111111111
   150   12 B .21111111111111111
   151   13 B .21111111111111111
   152   14 B .211111111111111110
   153   13 A .211111111111111112
   154   14 C .211111111111111122
   155   13 C .211111111111111121
   156   12 C .211111111111111111
   157   13 A .211111111111111211
   158   14 C .211111111111111221
   159   15 A .2111111111111112220
   160   16 B .21111111111111122210
   161   15 A .21111111111111122212
   162   16 C .21111111111111122222
   163   15 C .21111111111111122221
   164   14 C .21111111111111122211
   165   13 C .21111111111111122111
   166   12 C .21111111111111121111
   167   11 C .21111111111111111111
   168   12 A .21111111111111211111
   169   13 C .21111111111111221111
   170   14 A .21111111111111222111
   171   15 C .21111111111111222211
   172   16 A .21111111111111222221
   173   17 C .211111111111112222220
   174   18 B .2111111111111122222220
   175   17 A .2111111111111122222222
   176   16 A .2111111111111122222212
   177   15 A .2111111111111122222112
   178   14 A .2111111111111122221112
   179   13 A .2111111111111122211112
   180   12 A .2111111111111122111112
   181   11 A .2111111111111121111112
   182   10 A .2111111111111111111112
   183   11 C .2111111111111211111112
   184   12 A .2111111111111221111112
   185   13 C .2111111111111222111112
   186   14 A .2111111111111222211112
   187   15 C .2111111111111222221112
   188   16 A .2111111111111222222112
   189   17 C .2111111111111222222212
   190   18 A .2111111111111222222222
   191   17 A .2111111111111222222221
   192   16 A .2111111111111222222211
   193   15 A .2111111111111222222111
   194   14 A .2111111111111222221111
   195   13 A .2111111111111222211111
   196   12 A .2111111111111222111111
   197   11 A .2111111111111221111111
   198   10 A .2111111111111211111111
   199    9 A .2111111111111111111111
   200   10 C .2111111111112111111111

After 200 steps (201 lines): state = C.
Produced     22 nonzeros.
Tape index 10, scanned [-3 .. 18].
State Count Execution count First in step
on 0 on 1 on 2 on 0 on 1 on 2
A 76 6 38 32 0 2 54
B 35 11 24   1 6  
C 89 5 32 52 5 12 3
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-macro machine.
The same TM as 2-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:13:26 CEST 2010