Comment: This TM produces 95,524,079 nonzeros in 4,345,166,620,336,565 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | |||||||
A | 1RB | 2RC | 1LA | 1 | right | B | 2 | right | C | 1 | left | A |
B | 2LA | 1RB | 1RH | 2 | left | A | 1 | right | B | 1 | right | H |
C | 2RB | 2RA | 1LC | 2 | right | B | 2 | right | A | 1 | left | C |
Simulation is done just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. The same TM as 2-macro machine. The same TM as 2-macro machine with pure additive config-TRs. Step Tpos St Tape contents 0 0 A . . 0 1 1 B . . 10 2 0 A . . 12 3 1 C . . 22 4 0 C . . 21 5 -1 C . .011 6 0 B . .211 7 1 B . .211 8 2 B . .2110 9 1 A . .2112 10 2 C . .2122 11 1 C . .2121 12 0 C . .2111 13 1 A . .2211 14 2 C . .2221 15 3 A . .22220 16 4 B . .222210 17 3 A . .222212 18 4 C . .222222 19 3 C . .222221 20 2 C . .222211 21 1 C . .222111 22 0 C . .221111 23 -1 C . .211111 24 -2 C . 0111111 25 -1 B . 2111111 26 0 B . 2111111 27 1 B . 2111111 28 2 B . 2111111 29 3 B . 2111111 30 4 B . 2111111 31 5 B . 21111110 32 4 A . 21111112 33 5 C . 21111122 34 4 C . 21111121 35 3 C . 21111111 36 4 A . 21111211 37 5 C . 21111221 38 6 A . 211112220 39 7 B . 2111122210 40 6 A . 2111122212 41 7 C . 2111122222 42 6 C . 2111122221 43 5 C . 2111122211 44 4 C . 2111122111 45 3 C . 2111121111 46 2 C . 2111111111 47 3 A . 2111211111 48 4 C . 2111221111 49 5 A . 2111222111 50 6 C . 2111222211 51 7 A . 2111222221 52 8 C . 21112222220 53 9 B . 211122222220 54 8 A . 211122222222 55 7 A . 211122222212 56 6 A . 211122222112 57 5 A . 211122221112 58 4 A . 211122211112 59 3 A . 211122111112 60 2 A . 211121111112 61 1 A . 211111111112 62 2 C . 211211111112 63 3 A . 211221111112 64 4 C . 211222111112 65 5 A . 211222211112 66 6 C . 211222221112 67 7 A . 211222222112 68 8 C . 211222222212 69 9 A . 211222222222 70 8 A . 211222222221 71 7 A . 211222222211 72 6 A . 211222222111 73 5 A . 211222221111 74 4 A . 211222211111 75 3 A . 211222111111 76 2 A . 211221111111 77 1 A . 211211111111 78 0 A . 211111111111 79 1 C . 212111111111 80 2 A . 212211111111 81 3 C . 212221111111 82 4 A . 212222111111 83 5 C . 212222211111 84 6 A . 212222221111 85 7 C . 212222222111 86 8 A . 212222222211 87 9 C . 212222222221 88 10 A . 2122222222220 89 11 B . 21222222222210 90 10 A . 21222222222212 91 11 C . 21222222222222 92 10 C . 21222222222221 93 9 C . 21222222222211 94 8 C . 21222222222111 95 7 C . 21222222221111 96 6 C . 21222222211111 97 5 C . 21222222111111 98 4 C . 21222221111111 99 3 C . 21222211111111 100 2 C . 21222111111111 101 1 C . 21221111111111 102 0 C . 21211111111111 103 -1 C . 21111111111111 104 0 A . 22111111111111 105 1 C . 22211111111111 106 2 A . 22221111111111 107 3 C . 22222111111111 108 4 A . 22222211111111 109 5 C . 22222221111111 110 6 A . 22222222111111 111 7 C . 22222222211111 112 8 A . 22222222221111 113 9 C . 22222222222111 114 10 A . 22222222222211 115 11 C . 22222222222221 116 12 A . 222222222222220 117 13 B . 2222222222222210 118 12 A . 2222222222222212 119 13 C . 2222222222222222 120 12 C . 2222222222222221 121 11 C . 2222222222222211 122 10 C . 2222222222222111 123 9 C . 2222222222221111 124 8 C . 2222222222211111 125 7 C . 2222222222111111 126 6 C . 2222222221111111 127 5 C . 2222222211111111 128 4 C . 2222222111111111 129 3 C . 2222221111111111 130 2 C . 2222211111111111 131 1 C . 2222111111111111 132 0 C . 2221111111111111 133 -1 C . 2211111111111111 134 -2 C . 2111111111111111 135 -3 C .01111111111111111 136 -2 B .21111111111111111 137 -1 B .21111111111111111 138 0 B .21111111111111111 139 1 B .21111111111111111 140 2 B .21111111111111111 141 3 B .21111111111111111 142 4 B .21111111111111111 143 5 B .21111111111111111 144 6 B .21111111111111111 145 7 B .21111111111111111 146 8 B .21111111111111111 147 9 B .21111111111111111 148 10 B .21111111111111111 149 11 B .21111111111111111 150 12 B .21111111111111111 151 13 B .21111111111111111 152 14 B .211111111111111110 153 13 A .211111111111111112 154 14 C .211111111111111122 155 13 C .211111111111111121 156 12 C .211111111111111111 157 13 A .211111111111111211 158 14 C .211111111111111221 159 15 A .2111111111111112220 160 16 B .21111111111111122210 161 15 A .21111111111111122212 162 16 C .21111111111111122222 163 15 C .21111111111111122221 164 14 C .21111111111111122211 165 13 C .21111111111111122111 166 12 C .21111111111111121111 167 11 C .21111111111111111111 168 12 A .21111111111111211111 169 13 C .21111111111111221111 170 14 A .21111111111111222111 171 15 C .21111111111111222211 172 16 A .21111111111111222221 173 17 C .211111111111112222220 174 18 B .2111111111111122222220 175 17 A .2111111111111122222222 176 16 A .2111111111111122222212 177 15 A .2111111111111122222112 178 14 A .2111111111111122221112 179 13 A .2111111111111122211112 180 12 A .2111111111111122111112 181 11 A .2111111111111121111112 182 10 A .2111111111111111111112 183 11 C .2111111111111211111112 184 12 A .2111111111111221111112 185 13 C .2111111111111222111112 186 14 A .2111111111111222211112 187 15 C .2111111111111222221112 188 16 A .2111111111111222222112 189 17 C .2111111111111222222212 190 18 A .2111111111111222222222 191 17 A .2111111111111222222221 192 16 A .2111111111111222222211 193 15 A .2111111111111222222111 194 14 A .2111111111111222221111 195 13 A .2111111111111222211111 196 12 A .2111111111111222111111 197 11 A .2111111111111221111111 198 10 A .2111111111111211111111 199 9 A .2111111111111111111111 200 10 C .2111111111112111111111 After 200 steps (201 lines): state = C. Produced 22 nonzeros. Tape index 10, scanned [-3 .. 18].
State | Count | Execution count | First in step | ||||
---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
A | 76 | 6 | 38 | 32 | 0 | 2 | 54 |
B | 35 | 11 | 24 | 1 | 6 | ||
C | 89 | 5 | 32 | 52 | 5 | 12 | 3 |