Comment: This TM produces 95,524,079 nonzeros in 4,345,166,620,336,565 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | |||||||
| A | 1RB | 2RC | 1LA | 1 | right | B | 2 | right | C | 1 | left | A |
| B | 2LA | 1RB | 1RH | 2 | left | A | 1 | right | B | 1 | right | H |
| C | 2RB | 2RA | 1LC | 2 | right | B | 2 | right | A | 1 | left | C |
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-macro machine.
The same TM as 2-macro machine with pure additive config-TRs.
Step Tpos St Tape contents
0 0 A . . 0
1 1 B . . 10
2 0 A . . 12
3 1 C . . 22
4 0 C . . 21
5 -1 C . .011
6 0 B . .211
7 1 B . .211
8 2 B . .2110
9 1 A . .2112
10 2 C . .2122
11 1 C . .2121
12 0 C . .2111
13 1 A . .2211
14 2 C . .2221
15 3 A . .22220
16 4 B . .222210
17 3 A . .222212
18 4 C . .222222
19 3 C . .222221
20 2 C . .222211
21 1 C . .222111
22 0 C . .221111
23 -1 C . .211111
24 -2 C . 0111111
25 -1 B . 2111111
26 0 B . 2111111
27 1 B . 2111111
28 2 B . 2111111
29 3 B . 2111111
30 4 B . 2111111
31 5 B . 21111110
32 4 A . 21111112
33 5 C . 21111122
34 4 C . 21111121
35 3 C . 21111111
36 4 A . 21111211
37 5 C . 21111221
38 6 A . 211112220
39 7 B . 2111122210
40 6 A . 2111122212
41 7 C . 2111122222
42 6 C . 2111122221
43 5 C . 2111122211
44 4 C . 2111122111
45 3 C . 2111121111
46 2 C . 2111111111
47 3 A . 2111211111
48 4 C . 2111221111
49 5 A . 2111222111
50 6 C . 2111222211
51 7 A . 2111222221
52 8 C . 21112222220
53 9 B . 211122222220
54 8 A . 211122222222
55 7 A . 211122222212
56 6 A . 211122222112
57 5 A . 211122221112
58 4 A . 211122211112
59 3 A . 211122111112
60 2 A . 211121111112
61 1 A . 211111111112
62 2 C . 211211111112
63 3 A . 211221111112
64 4 C . 211222111112
65 5 A . 211222211112
66 6 C . 211222221112
67 7 A . 211222222112
68 8 C . 211222222212
69 9 A . 211222222222
70 8 A . 211222222221
71 7 A . 211222222211
72 6 A . 211222222111
73 5 A . 211222221111
74 4 A . 211222211111
75 3 A . 211222111111
76 2 A . 211221111111
77 1 A . 211211111111
78 0 A . 211111111111
79 1 C . 212111111111
80 2 A . 212211111111
81 3 C . 212221111111
82 4 A . 212222111111
83 5 C . 212222211111
84 6 A . 212222221111
85 7 C . 212222222111
86 8 A . 212222222211
87 9 C . 212222222221
88 10 A . 2122222222220
89 11 B . 21222222222210
90 10 A . 21222222222212
91 11 C . 21222222222222
92 10 C . 21222222222221
93 9 C . 21222222222211
94 8 C . 21222222222111
95 7 C . 21222222221111
96 6 C . 21222222211111
97 5 C . 21222222111111
98 4 C . 21222221111111
99 3 C . 21222211111111
100 2 C . 21222111111111
101 1 C . 21221111111111
102 0 C . 21211111111111
103 -1 C . 21111111111111
104 0 A . 22111111111111
105 1 C . 22211111111111
106 2 A . 22221111111111
107 3 C . 22222111111111
108 4 A . 22222211111111
109 5 C . 22222221111111
110 6 A . 22222222111111
111 7 C . 22222222211111
112 8 A . 22222222221111
113 9 C . 22222222222111
114 10 A . 22222222222211
115 11 C . 22222222222221
116 12 A . 222222222222220
117 13 B . 2222222222222210
118 12 A . 2222222222222212
119 13 C . 2222222222222222
120 12 C . 2222222222222221
121 11 C . 2222222222222211
122 10 C . 2222222222222111
123 9 C . 2222222222221111
124 8 C . 2222222222211111
125 7 C . 2222222222111111
126 6 C . 2222222221111111
127 5 C . 2222222211111111
128 4 C . 2222222111111111
129 3 C . 2222221111111111
130 2 C . 2222211111111111
131 1 C . 2222111111111111
132 0 C . 2221111111111111
133 -1 C . 2211111111111111
134 -2 C . 2111111111111111
135 -3 C .01111111111111111
136 -2 B .21111111111111111
137 -1 B .21111111111111111
138 0 B .21111111111111111
139 1 B .21111111111111111
140 2 B .21111111111111111
141 3 B .21111111111111111
142 4 B .21111111111111111
143 5 B .21111111111111111
144 6 B .21111111111111111
145 7 B .21111111111111111
146 8 B .21111111111111111
147 9 B .21111111111111111
148 10 B .21111111111111111
149 11 B .21111111111111111
150 12 B .21111111111111111
151 13 B .21111111111111111
152 14 B .211111111111111110
153 13 A .211111111111111112
154 14 C .211111111111111122
155 13 C .211111111111111121
156 12 C .211111111111111111
157 13 A .211111111111111211
158 14 C .211111111111111221
159 15 A .2111111111111112220
160 16 B .21111111111111122210
161 15 A .21111111111111122212
162 16 C .21111111111111122222
163 15 C .21111111111111122221
164 14 C .21111111111111122211
165 13 C .21111111111111122111
166 12 C .21111111111111121111
167 11 C .21111111111111111111
168 12 A .21111111111111211111
169 13 C .21111111111111221111
170 14 A .21111111111111222111
171 15 C .21111111111111222211
172 16 A .21111111111111222221
173 17 C .211111111111112222220
174 18 B .2111111111111122222220
175 17 A .2111111111111122222222
176 16 A .2111111111111122222212
177 15 A .2111111111111122222112
178 14 A .2111111111111122221112
179 13 A .2111111111111122211112
180 12 A .2111111111111122111112
181 11 A .2111111111111121111112
182 10 A .2111111111111111111112
183 11 C .2111111111111211111112
184 12 A .2111111111111221111112
185 13 C .2111111111111222111112
186 14 A .2111111111111222211112
187 15 C .2111111111111222221112
188 16 A .2111111111111222222112
189 17 C .2111111111111222222212
190 18 A .2111111111111222222222
191 17 A .2111111111111222222221
192 16 A .2111111111111222222211
193 15 A .2111111111111222222111
194 14 A .2111111111111222221111
195 13 A .2111111111111222211111
196 12 A .2111111111111222111111
197 11 A .2111111111111221111111
198 10 A .2111111111111211111111
199 9 A .2111111111111111111111
200 10 C .2111111111112111111111
After 200 steps (201 lines): state = C.
Produced 22 nonzeros.
Tape index 10, scanned [-3 .. 18].
| State | Count | Execution count | First in step | ||||
|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
| A | 76 | 6 | 38 | 32 | 0 | 2 | 54 |
| B | 35 | 11 | 24 | 1 | 6 | ||
| C | 89 | 5 | 32 | 52 | 5 | 12 | 3 |