Comment: This TM produces 95,524,079 nonzeros in 4,345,166,620,336,565 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | |||||||
| A | 1RB | 2RC | 1LA | 1 | right | B | 2 | right | C | 1 | left | A |
| B | 2LA | 1RB | 1RH | 2 | left | A | 1 | right | B | 1 | right | H |
| C | 2RB | 2RA | 1LC | 2 | right | B | 2 | right | A | 1 | left | C |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 2-macro machine.
The same TM as 2-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <A 2
3 1 2 C> 2
4 0 2 <C 1
5 -1 <C 1 1
6 0 2 B> 1 1
+ 8 2 2 1 1 B>
9 1 2 1 1 <A 2
10 2 2 1 2 C> 2
11 1 2 1 2 <C 1
12 0 2 1 <C 1 1
13 1 2 2 A> 1 1
14 2 23 C> 1
15 3 24 A>
16 4 24 1 B>
17 3 24 1 <A 2
18 4 25 C> 2
19 3 25 <C 1
+ 24 -2 <C 16
25 -1 2 B> 16
+ 31 5 2 16 B>
32 4 2 16 <A 2
33 5 2 15 2 C> 2
34 4 2 15 2 <C 1
35 3 2 15 <C 1 1
36 4 2 14 2 A> 1 1
37 5 2 14 2 2 C> 1
38 6 2 14 23 A>
39 7 2 14 23 1 B>
40 6 2 14 23 1 <A 2
41 7 2 14 24 C> 2
42 6 2 14 24 <C 1
+ 46 2 2 14 <C 15
47 3 2 13 2 A> 15
48 4 2 13 2 2 C> 14
49 5 2 13 23 A> 13
50 6 2 13 24 C> 1 1
51 7 2 13 25 A> 1
52 8 2 13 26 C>
53 9 2 13 27 B>
54 8 2 13 27 <A 2
+ 61 1 2 13 <A 17 2
62 2 2 1 1 2 C> 17 2
63 3 2 1 1 2 2 A> 16 2
64 4 2 1 1 23 C> 15 2
65 5 2 1 1 24 A> 14 2
66 6 2 1 1 25 C> 13 2
67 7 2 1 1 26 A> 1 1 2
68 8 2 1 1 27 C> 1 2
69 9 2 1 1 28 A> 2
70 8 2 1 1 28 <A 1
+ 78 0 2 1 1 <A 19
79 1 2 1 2 C> 19
80 2 2 1 2 2 A> 18
81 3 2 1 23 C> 17
82 4 2 1 24 A> 16
83 5 2 1 25 C> 15
84 6 2 1 26 A> 14
85 7 2 1 27 C> 13
86 8 2 1 28 A> 1 1
87 9 2 1 29 C> 1
88 10 2 1 210 A>
89 11 2 1 210 1 B>
90 10 2 1 210 1 <A 2
91 11 2 1 211 C> 2
92 10 2 1 211 <C 1
+ 103 -1 2 1 <C 112
104 0 2 2 A> 112
105 1 23 C> 111
106 2 24 A> 110
107 3 25 C> 19
108 4 26 A> 18
109 5 27 C> 17
110 6 28 A> 16
111 7 29 C> 15
112 8 210 A> 14
113 9 211 C> 13
114 10 212 A> 1 1
115 11 213 C> 1
116 12 214 A>
117 13 214 1 B>
118 12 214 1 <A 2
119 13 215 C> 2
120 12 215 <C 1
+ 135 -3 <C 116
136 -2 2 B> 116
+ 152 14 2 116 B>
153 13 2 116 <A 2
154 14 2 115 2 C> 2
155 13 2 115 2 <C 1
156 12 2 115 <C 1 1
157 13 2 114 2 A> 1 1
158 14 2 114 2 2 C> 1
159 15 2 114 23 A>
160 16 2 114 23 1 B>
161 15 2 114 23 1 <A 2
162 16 2 114 24 C> 2
163 15 2 114 24 <C 1
+ 167 11 2 114 <C 15
168 12 2 113 2 A> 15
169 13 2 113 2 2 C> 14
170 14 2 113 23 A> 13
171 15 2 113 24 C> 1 1
172 16 2 113 25 A> 1
173 17 2 113 26 C>
174 18 2 113 27 B>
175 17 2 113 27 <A 2
+ 182 10 2 113 <A 17 2
183 11 2 112 2 C> 17 2
184 12 2 112 2 2 A> 16 2
185 13 2 112 23 C> 15 2
186 14 2 112 24 A> 14 2
187 15 2 112 25 C> 13 2
188 16 2 112 26 A> 1 1 2
189 17 2 112 27 C> 1 2
190 18 2 112 28 A> 2
191 17 2 112 28 <A 1
+ 199 9 2 112 <A 19
200 10 2 111 2 C> 19
201 11 2 111 2 2 A> 18
202 12 2 111 23 C> 17
203 13 2 111 24 A> 16
204 14 2 111 25 C> 15
205 15 2 111 26 A> 14
206 16 2 111 27 C> 13
207 17 2 111 28 A> 1 1
208 18 2 111 29 C> 1
209 19 2 111 210 A>
210 20 2 111 210 1 B>
211 19 2 111 210 1 <A 2
212 20 2 111 211 C> 2
213 19 2 111 211 <C 1
+ 224 8 2 111 <C 112
225 9 2 110 2 A> 112
226 10 2 110 2 2 C> 111
227 11 2 110 23 A> 110
228 12 2 110 24 C> 19
229 13 2 110 25 A> 18
230 14 2 110 26 C> 17
231 15 2 110 27 A> 16
232 16 2 110 28 C> 15
233 17 2 110 29 A> 14
234 18 2 110 210 C> 13
235 19 2 110 211 A> 1 1
236 20 2 110 212 C> 1
237 21 2 110 213 A>
238 22 2 110 213 1 B>
239 21 2 110 213 1 <A 2
240 22 2 110 214 C> 2
241 21 2 110 214 <C 1
+ 255 7 2 110 <C 115
256 8 2 19 2 A> 115
257 9 2 19 2 2 C> 114
258 10 2 19 23 A> 113
259 11 2 19 24 C> 112
260 12 2 19 25 A> 111
261 13 2 19 26 C> 110
262 14 2 19 27 A> 19
263 15 2 19 28 C> 18
264 16 2 19 29 A> 17
265 17 2 19 210 C> 16
266 18 2 19 211 A> 15
267 19 2 19 212 C> 14
268 20 2 19 213 A> 13
269 21 2 19 214 C> 1 1
270 22 2 19 215 A> 1
271 23 2 19 216 C>
272 24 2 19 217 B>
273 23 2 19 217 <A 2
+ 290 6 2 19 <A 117 2
291 7 2 18 2 C> 117 2
292 8 2 18 2 2 A> 116 2
293 9 2 18 23 C> 115 2
294 10 2 18 24 A> 114 2
295 11 2 18 25 C> 113 2
296 12 2 18 26 A> 112 2
297 13 2 18 27 C> 111 2
298 14 2 18 28 A> 110 2
299 15 2 18 29 C> 19 2
300 16 2 18 210 A> 18 2
301 17 2 18 211 C> 17 2
302 18 2 18 212 A> 16 2
303 19 2 18 213 C> 15 2
304 20 2 18 214 A> 14 2
305 21 2 18 215 C> 13 2
306 22 2 18 216 A> 1 1 2
307 23 2 18 217 C> 1 2
308 24 2 18 218 A> 2
309 23 2 18 218 <A 1
+ 327 5 2 18 <A 119
328 6 2 17 2 C> 119
329 7 2 17 2 2 A> 118
330 8 2 17 23 C> 117
331 9 2 17 24 A> 116
332 10 2 17 25 C> 115
333 11 2 17 26 A> 114
334 12 2 17 27 C> 113
335 13 2 17 28 A> 112
336 14 2 17 29 C> 111
337 15 2 17 210 A> 110
After 337 steps (201 lines): state = A.
Produced 28 nonzeros.
Tape index 15, scanned [-3 .. 24].
| State | Count | Execution count | First in step | ||||
|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
| A | 148 | 8 | 72 | 68 | 0 | 2 | 54 |
| B | 38 | 14 | 24 | 1 | 6 | ||
| C | 151 | 6 | 66 | 79 | 5 | 12 | 3 |