Comment: This TM produces 95,524,079 nonzeros in 4,345,166,620,336,565 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | |||||||
A | 1RB | 2RC | 1LA | 1 | right | B | 2 | right | C | 1 | left | A |
B | 2LA | 1RB | 1RH | 2 | left | A | 1 | right | B | 1 | right | H |
C | 2RB | 2RA | 1LC | 2 | right | B | 2 | right | A | 1 | left | C |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 2-macro machine. The same TM as 2-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <A 2 3 1 2 C> 2 4 0 2 <C 1 5 -1 <C 1 1 6 0 2 B> 1 1 + 8 2 2 1 1 B> 9 1 2 1 1 <A 2 10 2 2 1 2 C> 2 11 1 2 1 2 <C 1 12 0 2 1 <C 1 1 13 1 2 2 A> 1 1 14 2 23 C> 1 15 3 24 A> 16 4 24 1 B> 17 3 24 1 <A 2 18 4 25 C> 2 19 3 25 <C 1 + 24 -2 <C 16 25 -1 2 B> 16 + 31 5 2 16 B> 32 4 2 16 <A 2 33 5 2 15 2 C> 2 34 4 2 15 2 <C 1 35 3 2 15 <C 1 1 36 4 2 14 2 A> 1 1 37 5 2 14 2 2 C> 1 38 6 2 14 23 A> 39 7 2 14 23 1 B> 40 6 2 14 23 1 <A 2 41 7 2 14 24 C> 2 42 6 2 14 24 <C 1 + 46 2 2 14 <C 15 47 3 2 13 2 A> 15 48 4 2 13 2 2 C> 14 49 5 2 13 23 A> 13 50 6 2 13 24 C> 1 1 51 7 2 13 25 A> 1 52 8 2 13 26 C> 53 9 2 13 27 B> 54 8 2 13 27 <A 2 + 61 1 2 13 <A 17 2 62 2 2 1 1 2 C> 17 2 63 3 2 1 1 2 2 A> 16 2 64 4 2 1 1 23 C> 15 2 65 5 2 1 1 24 A> 14 2 66 6 2 1 1 25 C> 13 2 67 7 2 1 1 26 A> 1 1 2 68 8 2 1 1 27 C> 1 2 69 9 2 1 1 28 A> 2 70 8 2 1 1 28 <A 1 + 78 0 2 1 1 <A 19 79 1 2 1 2 C> 19 80 2 2 1 2 2 A> 18 81 3 2 1 23 C> 17 82 4 2 1 24 A> 16 83 5 2 1 25 C> 15 84 6 2 1 26 A> 14 85 7 2 1 27 C> 13 86 8 2 1 28 A> 1 1 87 9 2 1 29 C> 1 88 10 2 1 210 A> 89 11 2 1 210 1 B> 90 10 2 1 210 1 <A 2 91 11 2 1 211 C> 2 92 10 2 1 211 <C 1 + 103 -1 2 1 <C 112 104 0 2 2 A> 112 105 1 23 C> 111 106 2 24 A> 110 107 3 25 C> 19 108 4 26 A> 18 109 5 27 C> 17 110 6 28 A> 16 111 7 29 C> 15 112 8 210 A> 14 113 9 211 C> 13 114 10 212 A> 1 1 115 11 213 C> 1 116 12 214 A> 117 13 214 1 B> 118 12 214 1 <A 2 119 13 215 C> 2 120 12 215 <C 1 + 135 -3 <C 116 136 -2 2 B> 116 + 152 14 2 116 B> 153 13 2 116 <A 2 154 14 2 115 2 C> 2 155 13 2 115 2 <C 1 156 12 2 115 <C 1 1 157 13 2 114 2 A> 1 1 158 14 2 114 2 2 C> 1 159 15 2 114 23 A> 160 16 2 114 23 1 B> 161 15 2 114 23 1 <A 2 162 16 2 114 24 C> 2 163 15 2 114 24 <C 1 + 167 11 2 114 <C 15 168 12 2 113 2 A> 15 169 13 2 113 2 2 C> 14 170 14 2 113 23 A> 13 171 15 2 113 24 C> 1 1 172 16 2 113 25 A> 1 173 17 2 113 26 C> 174 18 2 113 27 B> 175 17 2 113 27 <A 2 + 182 10 2 113 <A 17 2 183 11 2 112 2 C> 17 2 184 12 2 112 2 2 A> 16 2 185 13 2 112 23 C> 15 2 186 14 2 112 24 A> 14 2 187 15 2 112 25 C> 13 2 188 16 2 112 26 A> 1 1 2 189 17 2 112 27 C> 1 2 190 18 2 112 28 A> 2 191 17 2 112 28 <A 1 + 199 9 2 112 <A 19 200 10 2 111 2 C> 19 201 11 2 111 2 2 A> 18 202 12 2 111 23 C> 17 203 13 2 111 24 A> 16 204 14 2 111 25 C> 15 205 15 2 111 26 A> 14 206 16 2 111 27 C> 13 207 17 2 111 28 A> 1 1 208 18 2 111 29 C> 1 209 19 2 111 210 A> 210 20 2 111 210 1 B> 211 19 2 111 210 1 <A 2 212 20 2 111 211 C> 2 213 19 2 111 211 <C 1 + 224 8 2 111 <C 112 225 9 2 110 2 A> 112 226 10 2 110 2 2 C> 111 227 11 2 110 23 A> 110 228 12 2 110 24 C> 19 229 13 2 110 25 A> 18 230 14 2 110 26 C> 17 231 15 2 110 27 A> 16 232 16 2 110 28 C> 15 233 17 2 110 29 A> 14 234 18 2 110 210 C> 13 235 19 2 110 211 A> 1 1 236 20 2 110 212 C> 1 237 21 2 110 213 A> 238 22 2 110 213 1 B> 239 21 2 110 213 1 <A 2 240 22 2 110 214 C> 2 241 21 2 110 214 <C 1 + 255 7 2 110 <C 115 256 8 2 19 2 A> 115 257 9 2 19 2 2 C> 114 258 10 2 19 23 A> 113 259 11 2 19 24 C> 112 260 12 2 19 25 A> 111 261 13 2 19 26 C> 110 262 14 2 19 27 A> 19 263 15 2 19 28 C> 18 264 16 2 19 29 A> 17 265 17 2 19 210 C> 16 266 18 2 19 211 A> 15 267 19 2 19 212 C> 14 268 20 2 19 213 A> 13 269 21 2 19 214 C> 1 1 270 22 2 19 215 A> 1 271 23 2 19 216 C> 272 24 2 19 217 B> 273 23 2 19 217 <A 2 + 290 6 2 19 <A 117 2 291 7 2 18 2 C> 117 2 292 8 2 18 2 2 A> 116 2 293 9 2 18 23 C> 115 2 294 10 2 18 24 A> 114 2 295 11 2 18 25 C> 113 2 296 12 2 18 26 A> 112 2 297 13 2 18 27 C> 111 2 298 14 2 18 28 A> 110 2 299 15 2 18 29 C> 19 2 300 16 2 18 210 A> 18 2 301 17 2 18 211 C> 17 2 302 18 2 18 212 A> 16 2 303 19 2 18 213 C> 15 2 304 20 2 18 214 A> 14 2 305 21 2 18 215 C> 13 2 306 22 2 18 216 A> 1 1 2 307 23 2 18 217 C> 1 2 308 24 2 18 218 A> 2 309 23 2 18 218 <A 1 + 327 5 2 18 <A 119 328 6 2 17 2 C> 119 329 7 2 17 2 2 A> 118 330 8 2 17 23 C> 117 331 9 2 17 24 A> 116 332 10 2 17 25 C> 115 333 11 2 17 26 A> 114 334 12 2 17 27 C> 113 335 13 2 17 28 A> 112 336 14 2 17 29 C> 111 337 15 2 17 210 A> 110 After 337 steps (201 lines): state = A. Produced 28 nonzeros. Tape index 15, scanned [-3 .. 24].
State | Count | Execution count | First in step | ||||
---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
A | 148 | 8 | 72 | 68 | 0 | 2 | 54 |
B | 38 | 14 | 24 | 1 | 6 | ||
C | 151 | 6 | 66 | 79 | 5 | 12 | 3 |