3-state 3-symbol #a (T.J. & S. Ligocki)

Comment: This TM produces 95,524,079 nonzeros in 4,345,166,620,336,565 steps.

State on
0
on
1
on
2
on 0 on 1 on 2
Print Move Goto Print Move Goto Print Move Goto
A 1RB 2RC 1LA 1 right B 2 right C 1 left A
B 2LA 1RB 1RH 2 left A 1 right B 1 right H
C 2RB 2RA 1LC 2 right B 2 right A 1 left C
Transition table
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 2-macro machine.
The same TM as 2-macro machine with pure additive config-TRs.

Pushing initial machine.
Pushing macro factor 2.

Steps BasSteps BasTpos  Tape contents
    0        0       0  A>
    1        5      -1  <C 11
    2        6       0  02 B> 11
    3        8       2  02 11 B>
    4        9       1  02 11 <A 20
    5       10       2  02 12 C> 20
    6       11       1  02 12 <C 10
    7       14       2  02 22 C> 10
    8       16       4  02 22 21 B>
    9       17       3  02 22 21 <A 20
   10       18       4  02 222 C> 20
   11       19       3  02 222 <C 10
   12       23      -1  02 <C 112 10
   13       26       0  21 B> 112 10
   14       30       4  21 112 B> 10
   15       35       3  21 112 <C 11
   16       36       4  21 11 12 A> 11
   17       38       6  21 11 12 22 A>
   18       43       5  21 11 12 22 <C 11
   19       45       3  21 11 12 <C 112
   20       48       4  21 11 22 C> 112
   21       52       8  21 11 223 C>
   22       55       7  21 11 223 <A 12
   23       61       1  21 11 <A 113 12
   24       62       2  21 12 C> 113 12
   25       68       8  21 12 223 C> 12
   26       71       7  21 12 223 <A 11
   27       77       1  21 12 <A 114
   28       80       2  21 22 A> 114
   29       88      10  21 225 A>
   30       93       9  21 225 <C 11
   31      103      -1  21 <C 116
   32      104       0  22 A> 116
   33      116      12  227 A>
   34      121      11  227 <C 11
   35      135      -3  <C 118
   36      136      -2  02 B> 118
   37      152      14  02 118 B>
   38      153      13  02 118 <A 20
   39      154      14  02 117 12 C> 20
   40      155      13  02 117 12 <C 10
   41      158      14  02 117 22 C> 10
   42      160      16  02 117 22 21 B>
   43      161      15  02 117 22 21 <A 20
   44      162      16  02 117 222 C> 20
   45      163      15  02 117 222 <C 10
   46      167      11  02 117 <C 112 10
   47      168      12  02 116 12 A> 112 10
   48      172      16  02 116 12 222 A> 10
   49      174      18  02 116 12 223 B>
   50      175      17  02 116 12 223 <A 20
   51      181      11  02 116 12 <A 113 20
   52      184      12  02 116 22 A> 113 20
   53      190      18  02 116 224 A> 20
   54      191      17  02 116 224 <A 10
   55      199       9  02 116 <A 114 10
   56      200      10  02 115 12 C> 114 10
   57      208      18  02 115 12 224 C> 10
   58      210      20  02 115 12 224 21 B>
   59      211      19  02 115 12 224 21 <A 20
   60      212      20  02 115 12 225 C> 20
   61      213      19  02 115 12 225 <C 10
   62      223       9  02 115 12 <C 115 10
   63      226      10  02 115 22 C> 115 10
   64      236      20  02 115 226 C> 10
   65      238      22  02 115 226 21 B>
   66      239      21  02 115 226 21 <A 20
   67      240      22  02 115 227 C> 20
   68      241      21  02 115 227 <C 10
   69      255       7  02 115 <C 117 10
   70      256       8  02 114 12 A> 117 10
   71      270      22  02 114 12 227 A> 10
   72      272      24  02 114 12 228 B>
   73      273      23  02 114 12 228 <A 20
   74      289       7  02 114 12 <A 118 20
   75      292       8  02 114 22 A> 118 20
   76      308      24  02 114 229 A> 20
   77      309      23  02 114 229 <A 10
   78      327       5  02 114 <A 119 10
   79      328       6  02 113 12 C> 119 10
   80      346      24  02 113 12 229 C> 10
   81      348      26  02 113 12 229 21 B>
   82      349      25  02 113 12 229 21 <A 20
   83      350      26  02 113 12 2210 C> 20
   84      351      25  02 113 12 2210 <C 10
   85      371       5  02 113 12 <C 1110 10
   86      374       6  02 113 22 C> 1110 10
   87      394      26  02 113 2211 C> 10
   88      396      28  02 113 2211 21 B>
   89      397      27  02 113 2211 21 <A 20
   90      398      28  02 113 2212 C> 20
   91      399      27  02 113 2212 <C 10
   92      423       3  02 113 <C 1112 10
   93      424       4  02 112 12 A> 1112 10
   94      448      28  02 112 12 2212 A> 10
   95      450      30  02 112 12 2213 B>
   96      451      29  02 112 12 2213 <A 20
   97      477       3  02 112 12 <A 1113 20
   98      480       4  02 112 22 A> 1113 20
   99      506      30  02 112 2214 A> 20
  100      507      29  02 112 2214 <A 10
  101      535       1  02 112 <A 1114 10
  102      536       2  02 11 12 C> 1114 10
  103      564      30  02 11 12 2214 C> 10
  104      566      32  02 11 12 2214 21 B>
  105      567      31  02 11 12 2214 21 <A 20
  106      568      32  02 11 12 2215 C> 20
  107      569      31  02 11 12 2215 <C 10
  108      599       1  02 11 12 <C 1115 10
  109      602       2  02 11 22 C> 1115 10
  110      632      32  02 11 2216 C> 10
  111      634      34  02 11 2216 21 B>
  112      635      33  02 11 2216 21 <A 20
  113      636      34  02 11 2217 C> 20
  114      637      33  02 11 2217 <C 10
  115      671      -1  02 11 <C 1117 10
  116      672       0  02 12 A> 1117 10
  117      706      34  02 12 2217 A> 10
  118      708      36  02 12 2218 B>
  119      709      35  02 12 2218 <A 20
  120      745      -1  02 12 <A 1118 20
  121      748       0  02 22 A> 1118 20
  122      784      36  02 2219 A> 20
  123      785      35  02 2219 <A 10
  124      823      -3  02 <A 1119 10
  125      826      -2  11 B> 1119 10
  126      864      36  1120 B> 10
  127      869      35  1120 <C 11
  128      870      36  1119 12 A> 11
  129      872      38  1119 12 22 A>
  130      877      37  1119 12 22 <C 11
  131      879      35  1119 12 <C 112
  132      882      36  1119 22 C> 112
  133      886      40  1119 223 C>
  134      889      39  1119 223 <A 12
  135      895      33  1119 <A 113 12
  136      896      34  1118 12 C> 113 12
  137      902      40  1118 12 223 C> 12
  138      905      39  1118 12 223 <A 11
  139      911      33  1118 12 <A 114
  140      914      34  1118 22 A> 114
  141      922      42  1118 225 A>
  142      927      41  1118 225 <C 11
  143      937      31  1118 <C 116
  144      938      32  1117 12 A> 116
  145      950      44  1117 12 226 A>
  146      955      43  1117 12 226 <C 11
  147      967      31  1117 12 <C 117
  148      970      32  1117 22 C> 117
  149      984      46  1117 228 C>
  150      987      45  1117 228 <A 12
  151     1003      29  1117 <A 118 12
  152     1004      30  1116 12 C> 118 12
  153     1020      46  1116 12 228 C> 12
  154     1023      45  1116 12 228 <A 11
  155     1039      29  1116 12 <A 119
  156     1042      30  1116 22 A> 119
  157     1060      48  1116 2210 A>
  158     1065      47  1116 2210 <C 11
  159     1085      27  1116 <C 1111
  160     1086      28  1115 12 A> 1111
  161     1108      50  1115 12 2211 A>
  162     1113      49  1115 12 2211 <C 11
  163     1135      27  1115 12 <C 1112
  164     1138      28  1115 22 C> 1112
  165     1162      52  1115 2213 C>
  166     1165      51  1115 2213 <A 12
  167     1191      25  1115 <A 1113 12
  168     1192      26  1114 12 C> 1113 12
  169     1218      52  1114 12 2213 C> 12
  170     1221      51  1114 12 2213 <A 11
  171     1247      25  1114 12 <A 1114
  172     1250      26  1114 22 A> 1114
  173     1278      54  1114 2215 A>
  174     1283      53  1114 2215 <C 11
  175     1313      23  1114 <C 1116
  176     1314      24  1113 12 A> 1116
  177     1346      56  1113 12 2216 A>
  178     1351      55  1113 12 2216 <C 11
  179     1383      23  1113 12 <C 1117
  180     1386      24  1113 22 C> 1117
  181     1420      58  1113 2218 C>
  182     1423      57  1113 2218 <A 12
  183     1459      21  1113 <A 1118 12
  184     1460      22  1112 12 C> 1118 12
  185     1496      58  1112 12 2218 C> 12
  186     1499      57  1112 12 2218 <A 11
  187     1535      21  1112 12 <A 1119
  188     1538      22  1112 22 A> 1119
  189     1576      60  1112 2220 A>
  190     1581      59  1112 2220 <C 11
  191     1621      19  1112 <C 1121
  192     1622      20  1111 12 A> 1121
  193     1664      62  1111 12 2221 A>
  194     1669      61  1111 12 2221 <C 11
  195     1711      19  1111 12 <C 1122
  196     1714      20  1111 22 C> 1122
  197     1758      64  1111 2223 C>
  198     1761      63  1111 2223 <A 12
  199     1807      17  1111 <A 1123 12
  200     1808      18  1110 12 C> 1123 12

Lines:       201
Top steps:   200
Macro steps: 200
Basic steps: 1808
Tape index:  18
nonzeros:    70
log10(nonzeros):    1.845
log10(steps   ):    3.257

The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Input to awk program:
    gohalt 1
    nbs 3
    T 3-state 3-symbol #a (T.J. & S. Ligocki)
    : 95,524,079 4,345,166,620,336,565
    5T  1RB 2RC 1LA  2LA 1RB 1RH  2RB 2RA 1LC
    L 4
    M	201
    pref	sim
    machv Lig33_a  	just simple
    machv Lig33_a-r	with repetitions reduced
    machv Lig33_a-1	with tape symbol exponents
    machv Lig33_a-m	as 2-macro machine
    machv Lig33_a-a	as 2-macro machine with pure additive config-TRs
    iam	Lig33_a-m
    mtype	2
    mmtyp	1
    r	1
    H	1
    mac	0
    E	2
    sympr	
    HM	1
    date	Tue Jul  6 22:13:26 CEST 2010
    edate	Tue Jul  6 22:13:26 CEST 2010
    bnspeed	1

Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:13:26 CEST 2010
Ready: Tue Jul 6 22:13:26 CEST 2010