2-state 6-symbol #e (T.J. & S. Ligocki)

Comment: This TM produces >8.6x10^821 nonzeros in >4.9x10^1643 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on
5
on 0 on 1 on 2 on 3 on 4 on 5
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 2LB 4RB 1LA 1RB 1RH 1 right B 2 left B 4 right B 1 left A 1 right B 1 right H
B 1LA 3RA 5RA 4LB 0RA 4LA 1 left A 3 right A 5 right A 4 left B 0 right A 4 left A
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-macro machine.
The same TM as 2-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . . 0
     1    1 B . . . 10
     2    0 A . . . 11
     3   -1 B . . .021
     4   -2 A . . 0121
     5   -1 B . . 1121
     6    0 A . . 1321
     7    1 B . . 1341
     8    2 A . . 13430
     9    3 B . . 134310
    10    2 A . . 134311
    11    1 B . . 134321
    12    0 B . . 134421
    13    1 A . . 130421
    14    2 B . . 130121
    15    3 A . . 130151
    16    2 B . . 130152
    17    1 A . . 130142
    18    0 B . . 130242
    19   -1 A . . 131242
    20   -2 A . . 111242
    21   -3 B . .0211242
    22   -4 A . 01211242
    23   -3 B . 11211242
    24   -2 A . 13211242
    25   -1 B . 13411242
    26    0 A . 13431242
    27   -1 B . 13432242
    28   -2 B . 13442242
    29   -1 A . 13042242
    30    0 B . 13012242
    31    1 A . 13015242
    32    2 B . 13015442
    33    3 A . 13015402
    34    4 B . 130154040
    35    3 A . 130154041
    36    4 B . 130154011
    37    5 A . 1301540130
    38    6 B . 13015401310
    39    5 A . 13015401311
    40    4 B . 13015401321
    41    3 B . 13015401421
    42    4 A . 13015403421
    43    5 B . 13015403121
    44    6 A . 13015403151
    45    5 B . 13015403152
    46    4 A . 13015403142
    47    3 B . 13015403242
    48    2 B . 13015404242
    49    1 A . 13015414242
    50    2 B . 13015114242
    51    3 A . 13015134242
    52    4 B . 13015131242
    53    5 A . 13015131542
    54    6 B . 13015131512
    55    7 A . 130151315150
    56    8 B . 1301513151510
    57    7 A . 1301513151511
    58    6 B . 1301513151521
    59    5 A . 1301513151421
    60    4 B . 1301513152421
    61    3 A . 1301513142421
    62    2 B . 1301513242421
    63    1 B . 1301514242421
    64    2 A . 1301534242421
    65    3 B . 1301531242421
    66    4 A . 1301531542421
    67    5 B . 1301531512421
    68    6 A . 1301531515421
    69    7 B . 1301531515121
    70    8 A . 1301531515151
    71    7 B . 1301531515152
    72    6 A . 1301531515142
    73    5 B . 1301531515242
    74    4 A . 1301531514242
    75    3 B . 1301531524242
    76    2 A . 1301531424242
    77    1 B . 1301532424242
    78    0 B . 1301542424242
    79   -1 A . 1301442424242
    80   -2 B . 1302442424242
    81   -3 A . 1312442424242
    82   -4 A . 1112442424242
    83   -5 B .02112442424242
    84   -6 A 012112442424242
    85   -5 B 112112442424242
    86   -4 A 132112442424242
    87   -3 B 134112442424242
    88   -2 A 134312442424242
    89   -3 B 134322442424242
    90   -4 B 134422442424242
    91   -3 A 130422442424242
    92   -2 B 130122442424242
    93   -1 A 130152442424242
    94    0 B 130154442424242
    95    1 A 130154042424242
    96    2 B 130154012424242
    97    3 A 130154015424242
    98    4 B 130154015124242
    99    5 A 130154015154242
   100    6 B 130154015151242
   101    7 A 130154015151542
   102    8 B 130154015151512
   103    9 A 1301540151515150
   104   10 B 13015401515151510
   105    9 A 13015401515151511
   106    8 B 13015401515151521
   107    7 A 13015401515151421
   108    6 B 13015401515152421
   109    5 A 13015401515142421
   110    4 B 13015401515242421
   111    3 A 13015401514242421
   112    2 B 13015401524242421
   113    1 A 13015401424242421
   114    0 B 13015402424242421
   115   -1 A 13015412424242421
   116    0 B 13015112424242421
   117    1 A 13015132424242421
   118    2 B 13015134424242421
   119    3 A 13015134024242421
   120    4 B 13015134044242421
   121    5 A 13015134040242421
   122    6 B 13015134040442421
   123    7 A 13015134040402421
   124    8 B 13015134040404421
   125    9 A 13015134040404021
   126   10 B 13015134040404041
   127   11 A 130151340404040430
   128   12 B 1301513404040404310
   129   11 A 1301513404040404311
   130   10 B 1301513404040404321
   131    9 B 1301513404040404421
   132   10 A 1301513404040400421
   133   11 B 1301513404040400121
   134   12 A 1301513404040400151
   135   11 B 1301513404040400152
   136   10 A 1301513404040400142
   137    9 B 1301513404040400242
   138    8 A 1301513404040401242
   139    9 B 1301513404040411242
   140   10 A 1301513404040413242
   141   11 B 1301513404040413442
   142   12 A 1301513404040413402
   143   13 B 13015134040404134040
   144   12 A 13015134040404134041
   145   13 B 13015134040404134011
   146   14 A 130151340404041340130
   147   15 B 1301513404040413401310
   148   14 A 1301513404040413401311
   149   13 B 1301513404040413401321
   150   12 B 1301513404040413401421
   151   13 A 1301513404040413403421
   152   14 B 1301513404040413403121
   153   15 A 1301513404040413403151
   154   14 B 1301513404040413403152
   155   13 A 1301513404040413403142
   156   12 B 1301513404040413403242
   157   11 B 1301513404040413404242
   158   10 A 1301513404040413414242
   159   11 B 1301513404040413114242
   160   12 A 1301513404040413134242
   161   13 B 1301513404040413131242
   162   14 A 1301513404040413131542
   163   15 B 1301513404040413131512
   164   16 A 13015134040404131315150
   165   17 B 130151340404041313151510
   166   16 A 130151340404041313151511
   167   15 B 130151340404041313151521
   168   14 A 130151340404041313151421
   169   13 B 130151340404041313152421
   170   12 A 130151340404041313142421
   171   11 B 130151340404041313242421
   172   10 B 130151340404041314242421
   173   11 A 130151340404041334242421
   174   12 B 130151340404041331242421
   175   13 A 130151340404041331542421
   176   14 B 130151340404041331512421
   177   15 A 130151340404041331515421
   178   16 B 130151340404041331515121
   179   17 A 130151340404041331515151
   180   16 B 130151340404041331515152
   181   15 A 130151340404041331515142
   182   14 B 130151340404041331515242
   183   13 A 130151340404041331514242
   184   12 B 130151340404041331524242
   185   11 A 130151340404041331424242
   186   10 B 130151340404041332424242
   187    9 B 130151340404041342424242
   188    8 B 130151340404041442424242
   189    9 A 130151340404043442424242
   190   10 B 130151340404043142424242
   191   11 A 130151340404043102424242
   192   12 B 130151340404043104424242
   193   13 A 130151340404043104024242
   194   14 B 130151340404043104044242
   195   15 A 130151340404043104040242
   196   16 B 130151340404043104040442
   197   17 A 130151340404043104040402
   198   18 B 1301513404040431040404040
   199   17 A 1301513404040431040404041
   200   18 B 1301513404040431040404011

After 200 steps (201 lines): state = B.
Produced     17 nonzeros.
Tape index 18, scanned [-6 .. 18].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 5 on 0 on 1 on 2 on 3 on 4 on 5
A 95 12 37 17 2 27   0 2 6 19 13  
B 105 20 18 20 13 15 19 1 5 14 11 12 16
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-macro machine.
The same TM as 2-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:13:19 CEST 2010