Comment: This TM produces >8.6x10^821 nonzeros in >4.9x10^1643 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 5 |
on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||||
A | 1RB | 2LB | 4RB | 1LA | 1RB | 1RH | 1 | right | B | 2 | left | B | 4 | right | B | 1 | left | A | 1 | right | B | 1 | right | H |
B | 1LA | 3RA | 5RA | 4LB | 0RA | 4LA | 1 | left | A | 3 | right | A | 5 | right | A | 4 | left | B | 0 | right | A | 4 | left | A |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 2-macro machine. The same TM as 2-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <A 1 3 -1 <B 2 1 4 -2 <A 1 2 1 5 -1 1 B> 1 2 1 6 0 1 3 A> 2 1 7 1 1 3 4 B> 1 8 2 1 3 4 3 A> 9 3 1 3 4 3 1 B> 10 2 1 3 4 3 1 <A 1 11 1 1 3 4 3 <B 2 1 12 0 1 3 4 <B 4 2 1 13 1 1 3 0 A> 4 2 1 14 2 1 3 0 1 B> 2 1 15 3 1 3 0 1 5 A> 1 16 2 1 3 0 1 5 <B 2 17 1 1 3 0 1 <A 4 2 18 0 1 3 0 <B 2 4 2 19 -1 1 3 <A 1 2 4 2 20 -2 1 <A 1 1 2 4 2 21 -3 <B 2 1 1 2 4 2 22 -4 <A 1 2 1 1 2 4 2 23 -3 1 B> 1 2 1 1 2 4 2 24 -2 1 3 A> 2 1 1 2 4 2 25 -1 1 3 4 B> 1 1 2 4 2 26 0 1 3 4 3 A> 1 2 4 2 27 -1 1 3 4 3 <B 2 2 4 2 28 -2 1 3 4 <B 4 2 2 4 2 29 -1 1 3 0 A> 4 2 2 4 2 30 0 1 3 0 1 B> 2 2 4 2 31 1 1 3 0 1 5 A> 2 4 2 32 2 1 3 0 1 5 4 B> 4 2 33 3 1 3 0 1 5 4 0 A> 2 34 4 1 3 0 1 5 4 0 4 B> 35 3 1 3 0 1 5 4 0 4 <A 1 36 4 1 3 0 1 5 4 0 1 B> 1 37 5 1 3 0 1 5 4 0 1 3 A> 38 6 1 3 0 1 5 4 0 1 3 1 B> 39 5 1 3 0 1 5 4 0 1 3 1 <A 1 40 4 1 3 0 1 5 4 0 1 3 <B 2 1 41 3 1 3 0 1 5 4 0 1 <B 4 2 1 42 4 1 3 0 1 5 4 0 3 A> 4 2 1 43 5 1 3 0 1 5 4 0 3 1 B> 2 1 44 6 1 3 0 1 5 4 0 3 1 5 A> 1 45 5 1 3 0 1 5 4 0 3 1 5 <B 2 46 4 1 3 0 1 5 4 0 3 1 <A 4 2 47 3 1 3 0 1 5 4 0 3 <B 2 4 2 48 2 1 3 0 1 5 4 0 <B 4 2 4 2 49 1 1 3 0 1 5 4 <A 1 4 2 4 2 50 2 1 3 0 1 5 1 B> 1 4 2 4 2 51 3 1 3 0 1 5 1 3 A> 4 2 4 2 52 4 1 3 0 1 5 1 3 1 B> 2 4 2 53 5 1 3 0 1 5 1 3 1 5 A> 4 2 54 6 1 3 0 1 5 1 3 1 5 1 B> 2 55 7 1 3 0 1 5 1 3 1 5 1 5 A> 56 8 1 3 0 1 5 1 3 1 5 1 5 1 B> 57 7 1 3 0 1 5 1 3 1 5 1 5 1 <A 1 58 6 1 3 0 1 5 1 3 1 5 1 5 <B 2 1 59 5 1 3 0 1 5 1 3 1 5 1 <A 4 2 1 60 4 1 3 0 1 5 1 3 1 5 <B 2 4 2 1 61 3 1 3 0 1 5 1 3 1 <A 4 2 4 2 1 62 2 1 3 0 1 5 1 3 <B 2 4 2 4 2 1 63 1 1 3 0 1 5 1 <B 4 2 4 2 4 2 1 64 2 1 3 0 1 5 3 A> 4 2 4 2 4 2 1 65 3 1 3 0 1 5 3 1 B> 2 4 2 4 2 1 66 4 1 3 0 1 5 3 1 5 A> 4 2 4 2 1 67 5 1 3 0 1 5 3 1 5 1 B> 2 4 2 1 68 6 1 3 0 1 5 3 1 5 1 5 A> 4 2 1 69 7 1 3 0 1 5 3 1 5 1 5 1 B> 2 1 70 8 1 3 0 1 5 3 1 5 1 5 1 5 A> 1 71 7 1 3 0 1 5 3 1 5 1 5 1 5 <B 2 72 6 1 3 0 1 5 3 1 5 1 5 1 <A 4 2 73 5 1 3 0 1 5 3 1 5 1 5 <B 2 4 2 74 4 1 3 0 1 5 3 1 5 1 <A 4 2 4 2 75 3 1 3 0 1 5 3 1 5 <B 2 4 2 4 2 76 2 1 3 0 1 5 3 1 <A 4 2 4 2 4 2 77 1 1 3 0 1 5 3 <B 2 4 2 4 2 4 2 78 0 1 3 0 1 5 <B 4 2 4 2 4 2 4 2 79 -1 1 3 0 1 <A 4 4 2 4 2 4 2 4 2 80 -2 1 3 0 <B 2 4 4 2 4 2 4 2 4 2 81 -3 1 3 <A 1 2 4 4 2 4 2 4 2 4 2 82 -4 1 <A 1 1 2 4 4 2 4 2 4 2 4 2 83 -5 <B 2 1 1 2 4 4 2 4 2 4 2 4 2 84 -6 <A 1 2 1 1 2 4 4 2 4 2 4 2 4 2 85 -5 1 B> 1 2 1 1 2 4 4 2 4 2 4 2 4 2 86 -4 1 3 A> 2 1 1 2 4 4 2 4 2 4 2 4 2 87 -3 1 3 4 B> 1 1 2 4 4 2 4 2 4 2 4 2 88 -2 1 3 4 3 A> 1 2 4 4 2 4 2 4 2 4 2 89 -3 1 3 4 3 <B 2 2 4 4 2 4 2 4 2 4 2 90 -4 1 3 4 <B 4 2 2 4 4 2 4 2 4 2 4 2 91 -3 1 3 0 A> 4 2 2 4 4 2 4 2 4 2 4 2 92 -2 1 3 0 1 B> 2 2 4 4 2 4 2 4 2 4 2 93 -1 1 3 0 1 5 A> 2 4 4 2 4 2 4 2 4 2 94 0 1 3 0 1 5 4 B> 4 4 2 4 2 4 2 4 2 95 1 1 3 0 1 5 4 0 A> 4 2 4 2 4 2 4 2 96 2 1 3 0 1 5 4 0 1 B> 2 4 2 4 2 4 2 97 3 1 3 0 1 5 4 0 1 5 A> 4 2 4 2 4 2 98 4 1 3 0 1 5 4 0 1 5 1 B> 2 4 2 4 2 99 5 1 3 0 1 5 4 0 1 5 1 5 A> 4 2 4 2 100 6 1 3 0 1 5 4 0 1 5 1 5 1 B> 2 4 2 101 7 1 3 0 1 5 4 0 1 5 1 5 1 5 A> 4 2 102 8 1 3 0 1 5 4 0 1 5 1 5 1 5 1 B> 2 103 9 1 3 0 1 5 4 0 1 5 1 5 1 5 1 5 A> 104 10 1 3 0 1 5 4 0 1 5 1 5 1 5 1 5 1 B> 105 9 1 3 0 1 5 4 0 1 5 1 5 1 5 1 5 1 <A 1 106 8 1 3 0 1 5 4 0 1 5 1 5 1 5 1 5 <B 2 1 107 7 1 3 0 1 5 4 0 1 5 1 5 1 5 1 <A 4 2 1 108 6 1 3 0 1 5 4 0 1 5 1 5 1 5 <B 2 4 2 1 109 5 1 3 0 1 5 4 0 1 5 1 5 1 <A 4 2 4 2 1 110 4 1 3 0 1 5 4 0 1 5 1 5 <B 2 4 2 4 2 1 111 3 1 3 0 1 5 4 0 1 5 1 <A 4 2 4 2 4 2 1 112 2 1 3 0 1 5 4 0 1 5 <B 2 4 2 4 2 4 2 1 113 1 1 3 0 1 5 4 0 1 <A 4 2 4 2 4 2 4 2 1 114 0 1 3 0 1 5 4 0 <B 2 4 2 4 2 4 2 4 2 1 115 -1 1 3 0 1 5 4 <A 1 2 4 2 4 2 4 2 4 2 1 116 0 1 3 0 1 5 1 B> 1 2 4 2 4 2 4 2 4 2 1 117 1 1 3 0 1 5 1 3 A> 2 4 2 4 2 4 2 4 2 1 118 2 1 3 0 1 5 1 3 4 B> 4 2 4 2 4 2 4 2 1 119 3 1 3 0 1 5 1 3 4 0 A> 2 4 2 4 2 4 2 1 120 4 1 3 0 1 5 1 3 4 0 4 B> 4 2 4 2 4 2 1 121 5 1 3 0 1 5 1 3 4 0 4 0 A> 2 4 2 4 2 1 122 6 1 3 0 1 5 1 3 4 0 4 0 4 B> 4 2 4 2 1 123 7 1 3 0 1 5 1 3 4 0 4 0 4 0 A> 2 4 2 1 124 8 1 3 0 1 5 1 3 4 0 4 0 4 0 4 B> 4 2 1 125 9 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 A> 2 1 126 10 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 4 B> 1 127 11 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 4 3 A> 128 12 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 4 3 1 B> 129 11 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 4 3 1 <A 1 130 10 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 4 3 <B 2 1 131 9 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 4 <B 4 2 1 132 10 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 0 A> 4 2 1 133 11 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 0 1 B> 2 1 134 12 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 0 1 5 A> 1 135 11 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 0 1 5 <B 2 136 10 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 0 1 <A 4 2 137 9 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 0 <B 2 4 2 138 8 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 <A 1 2 4 2 139 9 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 B> 1 2 4 2 140 10 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 A> 2 4 2 141 11 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 B> 4 2 142 12 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 A> 2 143 13 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 4 B> 144 12 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 4 <A 1 145 13 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 1 B> 1 146 14 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 1 3 A> 147 15 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 1 3 1 B> 148 14 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 1 3 1 <A 1 149 13 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 1 3 <B 2 1 150 12 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 1 <B 4 2 1 151 13 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 3 A> 4 2 1 152 14 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 3 1 B> 2 1 153 15 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 3 1 5 A> 1 154 14 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 3 1 5 <B 2 155 13 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 3 1 <A 4 2 156 12 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 3 <B 2 4 2 157 11 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 <B 4 2 4 2 158 10 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 <A 1 4 2 4 2 159 11 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 B> 1 4 2 4 2 160 12 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 3 A> 4 2 4 2 161 13 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 3 1 B> 2 4 2 162 14 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 3 1 5 A> 4 2 163 15 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 3 1 5 1 B> 2 164 16 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 3 1 5 1 5 A> 165 17 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 3 1 5 1 5 1 B> 166 16 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 3 1 5 1 5 1 <A 1 167 15 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 3 1 5 1 5 <B 2 1 168 14 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 3 1 5 1 <A 4 2 1 169 13 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 3 1 5 <B 2 4 2 1 170 12 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 3 1 <A 4 2 4 2 1 171 11 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 3 <B 2 4 2 4 2 1 172 10 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 <B 4 2 4 2 4 2 1 173 11 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 A> 4 2 4 2 4 2 1 174 12 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 1 B> 2 4 2 4 2 1 175 13 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 1 5 A> 4 2 4 2 1 176 14 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 1 5 1 B> 2 4 2 1 177 15 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 1 5 1 5 A> 4 2 1 178 16 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 1 5 1 5 1 B> 2 1 179 17 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 1 5 1 5 1 5 A> 1 180 16 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 1 5 1 5 1 5 <B 2 181 15 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 1 5 1 5 1 <A 4 2 182 14 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 1 5 1 5 <B 2 4 2 183 13 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 1 5 1 <A 4 2 4 2 184 12 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 1 5 <B 2 4 2 4 2 185 11 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 1 <A 4 2 4 2 4 2 186 10 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 <B 2 4 2 4 2 4 2 + 188 8 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 <B 4 4 2 4 2 4 2 4 2 189 9 1 3 0 1 5 1 3 4 0 4 0 4 0 4 3 A> 4 4 2 4 2 4 2 4 2 190 10 1 3 0 1 5 1 3 4 0 4 0 4 0 4 3 1 B> 4 2 4 2 4 2 4 2 191 11 1 3 0 1 5 1 3 4 0 4 0 4 0 4 3 1 0 A> 2 4 2 4 2 4 2 192 12 1 3 0 1 5 1 3 4 0 4 0 4 0 4 3 1 0 4 B> 4 2 4 2 4 2 193 13 1 3 0 1 5 1 3 4 0 4 0 4 0 4 3 1 0 4 0 A> 2 4 2 4 2 194 14 1 3 0 1 5 1 3 4 0 4 0 4 0 4 3 1 0 4 0 4 B> 4 2 4 2 195 15 1 3 0 1 5 1 3 4 0 4 0 4 0 4 3 1 0 4 0 4 0 A> 2 4 2 196 16 1 3 0 1 5 1 3 4 0 4 0 4 0 4 3 1 0 4 0 4 0 4 B> 4 2 197 17 1 3 0 1 5 1 3 4 0 4 0 4 0 4 3 1 0 4 0 4 0 4 0 A> 2 198 18 1 3 0 1 5 1 3 4 0 4 0 4 0 4 3 1 0 4 0 4 0 4 0 4 B> 199 17 1 3 0 1 5 1 3 4 0 4 0 4 0 4 3 1 0 4 0 4 0 4 0 4 <A 1 200 18 1 3 0 1 5 1 3 4 0 4 0 4 0 4 3 1 0 4 0 4 0 4 0 1 B> 1 201 19 1 3 0 1 5 1 3 4 0 4 0 4 0 4 3 1 0 4 0 4 0 4 0 1 3 A> After 201 steps (201 lines): state = A. Produced 17 nonzeros. Tape index 19, scanned [-6 .. 18].
State | Count | Execution count | First in step | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||
A | 95 | 12 | 37 | 17 | 2 | 27 | 0 | 2 | 6 | 19 | 13 | ||
B | 106 | 20 | 19 | 20 | 13 | 15 | 19 | 1 | 5 | 14 | 11 | 12 | 16 |