Comment: This TM produces >8.6x10^821 nonzeros in >4.9x10^1643 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 5 |
on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||||
| A | 1RB | 2LB | 4RB | 1LA | 1RB | 1RH | 1 | right | B | 2 | left | B | 4 | right | B | 1 | left | A | 1 | right | B | 1 | right | H |
| B | 1LA | 3RA | 5RA | 4LB | 0RA | 4LA | 1 | left | A | 3 | right | A | 5 | right | A | 4 | left | B | 0 | right | A | 4 | left | A |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 2-macro machine.
The same TM as 2-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <A 1
3 -1 <B 2 1
4 -2 <A 1 2 1
5 -1 1 B> 1 2 1
6 0 1 3 A> 2 1
7 1 1 3 4 B> 1
8 2 1 3 4 3 A>
9 3 1 3 4 3 1 B>
10 2 1 3 4 3 1 <A 1
11 1 1 3 4 3 <B 2 1
12 0 1 3 4 <B 4 2 1
13 1 1 3 0 A> 4 2 1
14 2 1 3 0 1 B> 2 1
15 3 1 3 0 1 5 A> 1
16 2 1 3 0 1 5 <B 2
17 1 1 3 0 1 <A 4 2
18 0 1 3 0 <B 2 4 2
19 -1 1 3 <A 1 2 4 2
20 -2 1 <A 1 1 2 4 2
21 -3 <B 2 1 1 2 4 2
22 -4 <A 1 2 1 1 2 4 2
23 -3 1 B> 1 2 1 1 2 4 2
24 -2 1 3 A> 2 1 1 2 4 2
25 -1 1 3 4 B> 1 1 2 4 2
26 0 1 3 4 3 A> 1 2 4 2
27 -1 1 3 4 3 <B 2 2 4 2
28 -2 1 3 4 <B 4 2 2 4 2
29 -1 1 3 0 A> 4 2 2 4 2
30 0 1 3 0 1 B> 2 2 4 2
31 1 1 3 0 1 5 A> 2 4 2
32 2 1 3 0 1 5 4 B> 4 2
33 3 1 3 0 1 5 4 0 A> 2
34 4 1 3 0 1 5 4 0 4 B>
35 3 1 3 0 1 5 4 0 4 <A 1
36 4 1 3 0 1 5 4 0 1 B> 1
37 5 1 3 0 1 5 4 0 1 3 A>
38 6 1 3 0 1 5 4 0 1 3 1 B>
39 5 1 3 0 1 5 4 0 1 3 1 <A 1
40 4 1 3 0 1 5 4 0 1 3 <B 2 1
41 3 1 3 0 1 5 4 0 1 <B 4 2 1
42 4 1 3 0 1 5 4 0 3 A> 4 2 1
43 5 1 3 0 1 5 4 0 3 1 B> 2 1
44 6 1 3 0 1 5 4 0 3 1 5 A> 1
45 5 1 3 0 1 5 4 0 3 1 5 <B 2
46 4 1 3 0 1 5 4 0 3 1 <A 4 2
47 3 1 3 0 1 5 4 0 3 <B 2 4 2
48 2 1 3 0 1 5 4 0 <B 4 2 4 2
49 1 1 3 0 1 5 4 <A 1 4 2 4 2
50 2 1 3 0 1 5 1 B> 1 4 2 4 2
51 3 1 3 0 1 5 1 3 A> 4 2 4 2
52 4 1 3 0 1 5 1 3 1 B> 2 4 2
53 5 1 3 0 1 5 1 3 1 5 A> 4 2
54 6 1 3 0 1 5 1 3 1 5 1 B> 2
55 7 1 3 0 1 5 1 3 1 5 1 5 A>
56 8 1 3 0 1 5 1 3 1 5 1 5 1 B>
57 7 1 3 0 1 5 1 3 1 5 1 5 1 <A 1
58 6 1 3 0 1 5 1 3 1 5 1 5 <B 2 1
59 5 1 3 0 1 5 1 3 1 5 1 <A 4 2 1
60 4 1 3 0 1 5 1 3 1 5 <B 2 4 2 1
61 3 1 3 0 1 5 1 3 1 <A 4 2 4 2 1
62 2 1 3 0 1 5 1 3 <B 2 4 2 4 2 1
63 1 1 3 0 1 5 1 <B 4 2 4 2 4 2 1
64 2 1 3 0 1 5 3 A> 4 2 4 2 4 2 1
65 3 1 3 0 1 5 3 1 B> 2 4 2 4 2 1
66 4 1 3 0 1 5 3 1 5 A> 4 2 4 2 1
67 5 1 3 0 1 5 3 1 5 1 B> 2 4 2 1
68 6 1 3 0 1 5 3 1 5 1 5 A> 4 2 1
69 7 1 3 0 1 5 3 1 5 1 5 1 B> 2 1
70 8 1 3 0 1 5 3 1 5 1 5 1 5 A> 1
71 7 1 3 0 1 5 3 1 5 1 5 1 5 <B 2
72 6 1 3 0 1 5 3 1 5 1 5 1 <A 4 2
73 5 1 3 0 1 5 3 1 5 1 5 <B 2 4 2
74 4 1 3 0 1 5 3 1 5 1 <A 4 2 4 2
75 3 1 3 0 1 5 3 1 5 <B 2 4 2 4 2
76 2 1 3 0 1 5 3 1 <A 4 2 4 2 4 2
77 1 1 3 0 1 5 3 <B 2 4 2 4 2 4 2
78 0 1 3 0 1 5 <B 4 2 4 2 4 2 4 2
79 -1 1 3 0 1 <A 4 4 2 4 2 4 2 4 2
80 -2 1 3 0 <B 2 4 4 2 4 2 4 2 4 2
81 -3 1 3 <A 1 2 4 4 2 4 2 4 2 4 2
82 -4 1 <A 1 1 2 4 4 2 4 2 4 2 4 2
83 -5 <B 2 1 1 2 4 4 2 4 2 4 2 4 2
84 -6 <A 1 2 1 1 2 4 4 2 4 2 4 2 4 2
85 -5 1 B> 1 2 1 1 2 4 4 2 4 2 4 2 4 2
86 -4 1 3 A> 2 1 1 2 4 4 2 4 2 4 2 4 2
87 -3 1 3 4 B> 1 1 2 4 4 2 4 2 4 2 4 2
88 -2 1 3 4 3 A> 1 2 4 4 2 4 2 4 2 4 2
89 -3 1 3 4 3 <B 2 2 4 4 2 4 2 4 2 4 2
90 -4 1 3 4 <B 4 2 2 4 4 2 4 2 4 2 4 2
91 -3 1 3 0 A> 4 2 2 4 4 2 4 2 4 2 4 2
92 -2 1 3 0 1 B> 2 2 4 4 2 4 2 4 2 4 2
93 -1 1 3 0 1 5 A> 2 4 4 2 4 2 4 2 4 2
94 0 1 3 0 1 5 4 B> 4 4 2 4 2 4 2 4 2
95 1 1 3 0 1 5 4 0 A> 4 2 4 2 4 2 4 2
96 2 1 3 0 1 5 4 0 1 B> 2 4 2 4 2 4 2
97 3 1 3 0 1 5 4 0 1 5 A> 4 2 4 2 4 2
98 4 1 3 0 1 5 4 0 1 5 1 B> 2 4 2 4 2
99 5 1 3 0 1 5 4 0 1 5 1 5 A> 4 2 4 2
100 6 1 3 0 1 5 4 0 1 5 1 5 1 B> 2 4 2
101 7 1 3 0 1 5 4 0 1 5 1 5 1 5 A> 4 2
102 8 1 3 0 1 5 4 0 1 5 1 5 1 5 1 B> 2
103 9 1 3 0 1 5 4 0 1 5 1 5 1 5 1 5 A>
104 10 1 3 0 1 5 4 0 1 5 1 5 1 5 1 5 1 B>
105 9 1 3 0 1 5 4 0 1 5 1 5 1 5 1 5 1 <A 1
106 8 1 3 0 1 5 4 0 1 5 1 5 1 5 1 5 <B 2 1
107 7 1 3 0 1 5 4 0 1 5 1 5 1 5 1 <A 4 2 1
108 6 1 3 0 1 5 4 0 1 5 1 5 1 5 <B 2 4 2 1
109 5 1 3 0 1 5 4 0 1 5 1 5 1 <A 4 2 4 2 1
110 4 1 3 0 1 5 4 0 1 5 1 5 <B 2 4 2 4 2 1
111 3 1 3 0 1 5 4 0 1 5 1 <A 4 2 4 2 4 2 1
112 2 1 3 0 1 5 4 0 1 5 <B 2 4 2 4 2 4 2 1
113 1 1 3 0 1 5 4 0 1 <A 4 2 4 2 4 2 4 2 1
114 0 1 3 0 1 5 4 0 <B 2 4 2 4 2 4 2 4 2 1
115 -1 1 3 0 1 5 4 <A 1 2 4 2 4 2 4 2 4 2 1
116 0 1 3 0 1 5 1 B> 1 2 4 2 4 2 4 2 4 2 1
117 1 1 3 0 1 5 1 3 A> 2 4 2 4 2 4 2 4 2 1
118 2 1 3 0 1 5 1 3 4 B> 4 2 4 2 4 2 4 2 1
119 3 1 3 0 1 5 1 3 4 0 A> 2 4 2 4 2 4 2 1
120 4 1 3 0 1 5 1 3 4 0 4 B> 4 2 4 2 4 2 1
121 5 1 3 0 1 5 1 3 4 0 4 0 A> 2 4 2 4 2 1
122 6 1 3 0 1 5 1 3 4 0 4 0 4 B> 4 2 4 2 1
123 7 1 3 0 1 5 1 3 4 0 4 0 4 0 A> 2 4 2 1
124 8 1 3 0 1 5 1 3 4 0 4 0 4 0 4 B> 4 2 1
125 9 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 A> 2 1
126 10 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 4 B> 1
127 11 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 4 3 A>
128 12 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 4 3 1 B>
129 11 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 4 3 1 <A 1
130 10 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 4 3 <B 2 1
131 9 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 4 <B 4 2 1
132 10 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 0 A> 4 2 1
133 11 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 0 1 B> 2 1
134 12 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 0 1 5 A> 1
135 11 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 0 1 5 <B 2
136 10 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 0 1 <A 4 2
137 9 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 0 <B 2 4 2
138 8 1 3 0 1 5 1 3 4 0 4 0 4 0 4 0 <A 1 2 4 2
139 9 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 B> 1 2 4 2
140 10 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 A> 2 4 2
141 11 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 B> 4 2
142 12 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 A> 2
143 13 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 4 B>
144 12 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 4 <A 1
145 13 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 1 B> 1
146 14 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 1 3 A>
147 15 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 1 3 1 B>
148 14 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 1 3 1 <A 1
149 13 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 1 3 <B 2 1
150 12 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 1 <B 4 2 1
151 13 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 3 A> 4 2 1
152 14 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 3 1 B> 2 1
153 15 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 3 1 5 A> 1
154 14 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 3 1 5 <B 2
155 13 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 3 1 <A 4 2
156 12 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 3 <B 2 4 2
157 11 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 0 <B 4 2 4 2
158 10 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 4 <A 1 4 2 4 2
159 11 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 B> 1 4 2 4 2
160 12 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 3 A> 4 2 4 2
161 13 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 3 1 B> 2 4 2
162 14 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 3 1 5 A> 4 2
163 15 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 3 1 5 1 B> 2
164 16 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 3 1 5 1 5 A>
165 17 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 3 1 5 1 5 1 B>
166 16 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 3 1 5 1 5 1 <A 1
167 15 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 3 1 5 1 5 <B 2 1
168 14 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 3 1 5 1 <A 4 2 1
169 13 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 3 1 5 <B 2 4 2 1
170 12 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 3 1 <A 4 2 4 2 1
171 11 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 3 <B 2 4 2 4 2 1
172 10 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 1 <B 4 2 4 2 4 2 1
173 11 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 A> 4 2 4 2 4 2 1
174 12 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 1 B> 2 4 2 4 2 1
175 13 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 1 5 A> 4 2 4 2 1
176 14 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 1 5 1 B> 2 4 2 1
177 15 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 1 5 1 5 A> 4 2 1
178 16 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 1 5 1 5 1 B> 2 1
179 17 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 1 5 1 5 1 5 A> 1
180 16 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 1 5 1 5 1 5 <B 2
181 15 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 1 5 1 5 1 <A 4 2
182 14 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 1 5 1 5 <B 2 4 2
183 13 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 1 5 1 <A 4 2 4 2
184 12 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 1 5 <B 2 4 2 4 2
185 11 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 1 <A 4 2 4 2 4 2
186 10 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 3 3 <B 2 4 2 4 2 4 2
+ 188 8 1 3 0 1 5 1 3 4 0 4 0 4 0 4 1 <B 4 4 2 4 2 4 2 4 2
189 9 1 3 0 1 5 1 3 4 0 4 0 4 0 4 3 A> 4 4 2 4 2 4 2 4 2
190 10 1 3 0 1 5 1 3 4 0 4 0 4 0 4 3 1 B> 4 2 4 2 4 2 4 2
191 11 1 3 0 1 5 1 3 4 0 4 0 4 0 4 3 1 0 A> 2 4 2 4 2 4 2
192 12 1 3 0 1 5 1 3 4 0 4 0 4 0 4 3 1 0 4 B> 4 2 4 2 4 2
193 13 1 3 0 1 5 1 3 4 0 4 0 4 0 4 3 1 0 4 0 A> 2 4 2 4 2
194 14 1 3 0 1 5 1 3 4 0 4 0 4 0 4 3 1 0 4 0 4 B> 4 2 4 2
195 15 1 3 0 1 5 1 3 4 0 4 0 4 0 4 3 1 0 4 0 4 0 A> 2 4 2
196 16 1 3 0 1 5 1 3 4 0 4 0 4 0 4 3 1 0 4 0 4 0 4 B> 4 2
197 17 1 3 0 1 5 1 3 4 0 4 0 4 0 4 3 1 0 4 0 4 0 4 0 A> 2
198 18 1 3 0 1 5 1 3 4 0 4 0 4 0 4 3 1 0 4 0 4 0 4 0 4 B>
199 17 1 3 0 1 5 1 3 4 0 4 0 4 0 4 3 1 0 4 0 4 0 4 0 4 <A 1
200 18 1 3 0 1 5 1 3 4 0 4 0 4 0 4 3 1 0 4 0 4 0 4 0 1 B> 1
201 19 1 3 0 1 5 1 3 4 0 4 0 4 0 4 3 1 0 4 0 4 0 4 0 1 3 A>
After 201 steps (201 lines): state = A.
Produced 17 nonzeros.
Tape index 19, scanned [-6 .. 18].
| State | Count | Execution count | First in step | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||
| A | 95 | 12 | 37 | 17 | 2 | 27 | 0 | 2 | 6 | 19 | 13 | ||
| B | 106 | 20 | 19 | 20 | 13 | 15 | 19 | 1 | 5 | 14 | 11 | 12 | 16 |