Comment: This TM produces >8.6x10^821 nonzeros in >4.9x10^1643 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 5 |
on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||||
A | 1RB | 2LB | 4RB | 1LA | 1RB | 1RH | 1 | right | B | 2 | left | B | 4 | right | B | 1 | left | A | 1 | right | B | 1 | right | H |
B | 1LA | 3RA | 5RA | 4LB | 0RA | 4LA | 1 | left | A | 3 | right | A | 5 | right | A | 4 | left | B | 0 | right | A | 4 | left | A |
The same TM just simple. Simulation is done with repetitions reduced. The same TM with tape symbol exponents. The same TM as 2-macro machine. The same TM as 2-macro machine with pure additive config-TRs. Step Tpos St Tape contents 0 0 A . . . 0 1 1 B . . . 10 2 0 A . . . 11 3 -1 B . . .021 4 -2 A . . 0121 5 -1 B . . 1121 6 0 A . . 1321 7 1 B . . 1341 8 2 A . . 13430 9 3 B . . 134310 10 2 A . . 134311 11 1 B . . 134321 12 0 B . . 134421 13 1 A . . 130421 14 2 B . . 130121 15 3 A . . 130151 16 2 B . . 130152 17 1 A . . 130142 18 0 B . . 130242 19 -1 A . . 131242 20 -2 A . . 111242 21 -3 B . .0211242 22 -4 A . 01211242 23 -3 B . 11211242 24 -2 A . 13211242 25 -1 B . 13411242 26 0 A . 13431242 27 -1 B . 13432242 28 -2 B . 13442242 29 -1 A . 13042242 30 0 B . 13012242 31 1 A . 13015242 32 2 B . 13015442 33 3 A . 13015402 34 4 B . 130154040 35 3 A . 130154041 36 4 B . 130154011 37 5 A . 1301540130 38 6 B . 13015401310 39 5 A . 13015401311 40 4 B . 13015401321 41 3 B . 13015401421 42 4 A . 13015403421 43 5 B . 13015403121 44 6 A . 13015403151 45 5 B . 13015403152 46 4 A . 13015403142 47 3 B . 13015403242 48 2 B . 13015404242 49 1 A . 13015414242 50 2 B . 13015114242 51 3 A . 13015134242 52 4 B . 13015131242 53 5 A . 13015131542 54 6 B . 13015131512 55 7 A . 130151315150 56 8 B . 1301513151510 57 7 A . 1301513151511 58 6 B . 1301513151521 59 5 A . 1301513151421 60 4 B . 1301513152421 61 3 A . 1301513142421 62 2 B . 1301513242421 63 1 B . 1301514242421 64 2 A . 1301534242421 65 3 B . 1301531242421 66 4 A . 1301531542421 67 5 B . 1301531512421 68 6 A . 1301531515421 69 7 B . 1301531515121 70 8 A . 1301531515151 71 7 B . 1301531515152 72 6 A . 1301531515142 73 5 B . 1301531515242 74 4 A . 1301531514242 75 3 B . 1301531524242 76 2 A . 1301531424242 77 1 B . 1301532424242 78 0 B . 1301542424242 79 -1 A . 1301442424242 80 -2 B . 1302442424242 81 -3 A . 1312442424242 82 -4 A . 1112442424242 83 -5 B .02112442424242 84 -6 A 012112442424242 85 -5 B 112112442424242 86 -4 A 132112442424242 87 -3 B 134112442424242 88 -2 A 134312442424242 89 -3 B 134322442424242 90 -4 B 134422442424242 91 -3 A 130422442424242 92 -2 B 130122442424242 93 -1 A 130152442424242 94 0 B 130154442424242 95 1 A 130154042424242 96 2 B 130154012424242 97 3 A 130154015424242 98 4 B 130154015124242 99 5 A 130154015154242 100 6 B 130154015151242 101 7 A 130154015151542 102 8 B 130154015151512 103 9 A 1301540151515150 104 10 B 13015401515151510 105 9 A 13015401515151511 106 8 B 13015401515151521 107 7 A 13015401515151421 108 6 B 13015401515152421 109 5 A 13015401515142421 110 4 B 13015401515242421 111 3 A 13015401514242421 112 2 B 13015401524242421 113 1 A 13015401424242421 114 0 B 13015402424242421 115 -1 A 13015412424242421 116 0 B 13015112424242421 117 1 A 13015132424242421 118 2 B 13015134424242421 119 3 A 13015134024242421 120 4 B 13015134044242421 121 5 A 13015134040242421 122 6 B 13015134040442421 123 7 A 13015134040402421 124 8 B 13015134040404421 125 9 A 13015134040404021 126 10 B 13015134040404041 127 11 A 130151340404040430 128 12 B 1301513404040404310 129 11 A 1301513404040404311 130 10 B 1301513404040404321 131 9 B 1301513404040404421 132 10 A 1301513404040400421 133 11 B 1301513404040400121 134 12 A 1301513404040400151 135 11 B 1301513404040400152 136 10 A 1301513404040400142 137 9 B 1301513404040400242 138 8 A 1301513404040401242 139 9 B 1301513404040411242 140 10 A 1301513404040413242 141 11 B 1301513404040413442 142 12 A 1301513404040413402 143 13 B 13015134040404134040 144 12 A 13015134040404134041 145 13 B 13015134040404134011 146 14 A 130151340404041340130 147 15 B 1301513404040413401310 148 14 A 1301513404040413401311 149 13 B 1301513404040413401321 150 12 B 1301513404040413401421 151 13 A 1301513404040413403421 152 14 B 1301513404040413403121 153 15 A 1301513404040413403151 154 14 B 1301513404040413403152 155 13 A 1301513404040413403142 156 12 B 1301513404040413403242 157 11 B 1301513404040413404242 158 10 A 1301513404040413414242 159 11 B 1301513404040413114242 160 12 A 1301513404040413134242 161 13 B 1301513404040413131242 162 14 A 1301513404040413131542 163 15 B 1301513404040413131512 164 16 A 13015134040404131315150 165 17 B 130151340404041313151510 166 16 A 130151340404041313151511 167 15 B 130151340404041313151521 168 14 A 130151340404041313151421 169 13 B 130151340404041313152421 170 12 A 130151340404041313142421 171 11 B 130151340404041313242421 172 10 B 130151340404041314242421 173 11 A 130151340404041334242421 174 12 B 130151340404041331242421 175 13 A 130151340404041331542421 176 14 B 130151340404041331512421 177 15 A 130151340404041331515421 178 16 B 130151340404041331515121 179 17 A 130151340404041331515151 180 16 B 130151340404041331515152 181 15 A 130151340404041331515142 182 14 B 130151340404041331515242 183 13 A 130151340404041331514242 184 12 B 130151340404041331524242 185 11 A 130151340404041331424242 186 10 B 130151340404041332424242 + 188 8 B 130151340404041442424242 by B/3 * 2 189 9 A 130151340404043442424242 190 10 B 130151340404043142424242 191 11 A 130151340404043102424242 192 12 B 130151340404043104424242 193 13 A 130151340404043104024242 194 14 B 130151340404043104044242 195 15 A 130151340404043104040242 196 16 B 130151340404043104040442 197 17 A 130151340404043104040402 198 18 B 1301513404040431040404040 199 17 A 1301513404040431040404041 200 18 B 1301513404040431040404011 201 19 A 13015134040404310404040130 After 201 steps (201 lines): state = A. Produced 17 nonzeros. Tape index 19, scanned [-6 .. 18].
State | Count | Execution count | First in step | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||
A | 95 | 12 | 37 | 17 | 2 | 27 | 0 | 2 | 6 | 19 | 13 | ||
B | 106 | 20 | 19 | 20 | 13 | 15 | 19 | 1 | 5 | 14 | 11 | 12 | 16 |