Comment: This TM produces 10249 nonzeros in 98364599 steps. Comment: The halting transition has been changed to produce a 1 Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 5 |
on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||||
| A | 4RB | 4RA | 4RA | 1LA | 1LA | 1LB | 4 | right | B | 4 | right | A | 4 | right | A | 1 | left | A | 1 | left | A | 1 | left | B |
| B | 4LB | 2RB | 5LB | 3RA | 3LA | 1RH | 4 | left | B | 2 | right | B | 5 | left | B | 3 | right | A | 3 | left | A | 1 | right | H |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 4 B>
2 0 4 <B 4
3 -1 <A 3 4
4 0 4 B> 3 4
5 1 4 3 A> 4
6 0 4 3 <A 1
7 -1 4 <A 1 1
8 -2 <A 13
9 -1 4 B> 13
+ 12 2 4 23 B>
13 1 4 23 <B 4
+ 16 -2 4 <B 53 4
17 -3 <A 3 53 4
18 -2 4 B> 3 53 4
19 -1 4 3 A> 53 4
20 -2 4 3 <B 1 5 5 4
21 -1 4 3 A> 1 5 5 4
22 0 4 3 4 A> 5 5 4
23 -1 4 3 4 <B 1 5 4
24 -2 4 3 <A 3 1 5 4
25 -3 4 <A 1 3 1 5 4
26 -4 <A 1 1 3 1 5 4
27 -3 4 B> 1 1 3 1 5 4
+ 29 -1 4 2 2 B> 3 1 5 4
30 0 4 2 2 3 A> 1 5 4
31 1 4 2 2 3 4 A> 5 4
32 0 4 2 2 3 4 <B 1 4
33 -1 4 2 2 3 <A 3 1 4
34 -2 4 2 2 <A 1 3 1 4
35 -1 4 2 4 A> 1 3 1 4
36 0 4 2 4 4 A> 3 1 4
37 -1 4 2 4 4 <A 1 1 4
+ 39 -3 4 2 <A 14 4
40 -2 4 4 A> 14 4
+ 44 2 46 A> 4
45 1 46 <A 1
+ 51 -5 <A 17
52 -4 4 B> 17
+ 59 3 4 27 B>
60 2 4 27 <B 4
+ 67 -5 4 <B 57 4
68 -6 <A 3 57 4
69 -5 4 B> 3 57 4
70 -4 4 3 A> 57 4
71 -5 4 3 <B 1 56 4
72 -4 4 3 A> 1 56 4
73 -3 4 3 4 A> 56 4
74 -4 4 3 4 <B 1 55 4
75 -5 4 3 <A 3 1 55 4
76 -6 4 <A 1 3 1 55 4
77 -7 <A 1 1 3 1 55 4
78 -6 4 B> 1 1 3 1 55 4
+ 80 -4 4 2 2 B> 3 1 55 4
81 -3 4 2 2 3 A> 1 55 4
82 -2 4 2 2 3 4 A> 55 4
83 -3 4 2 2 3 4 <B 1 54 4
84 -4 4 2 2 3 <A 3 1 54 4
85 -5 4 2 2 <A 1 3 1 54 4
86 -4 4 2 4 A> 1 3 1 54 4
87 -3 4 2 4 4 A> 3 1 54 4
88 -4 4 2 4 4 <A 1 1 54 4
+ 90 -6 4 2 <A 14 54 4
91 -5 4 4 A> 14 54 4
+ 95 -1 46 A> 54 4
96 -2 46 <B 1 53 4
97 -3 45 <A 3 1 53 4
+ 102 -8 <A 15 3 1 53 4
103 -7 4 B> 15 3 1 53 4
+ 108 -2 4 25 B> 3 1 53 4
109 -1 4 25 3 A> 1 53 4
110 0 4 25 3 4 A> 53 4
111 -1 4 25 3 4 <B 1 5 5 4
112 -2 4 25 3 <A 3 1 5 5 4
113 -3 4 25 <A 1 3 1 5 5 4
114 -2 4 24 4 A> 1 3 1 5 5 4
115 -1 4 24 4 4 A> 3 1 5 5 4
116 -2 4 24 4 4 <A 1 1 5 5 4
+ 118 -4 4 24 <A 14 5 5 4
119 -3 4 23 4 A> 14 5 5 4
+ 123 1 4 23 45 A> 5 5 4
124 0 4 23 45 <B 1 5 4
125 -1 4 23 44 <A 3 1 5 4
+ 129 -5 4 23 <A 14 3 1 5 4
130 -4 4 2 2 4 A> 14 3 1 5 4
+ 134 0 4 2 2 45 A> 3 1 5 4
135 -1 4 2 2 45 <A 1 1 5 4
+ 140 -6 4 2 2 <A 17 5 4
141 -5 4 2 4 A> 17 5 4
+ 148 2 4 2 48 A> 5 4
149 1 4 2 48 <B 1 4
150 0 4 2 47 <A 3 1 4
+ 157 -7 4 2 <A 17 3 1 4
158 -6 4 4 A> 17 3 1 4
+ 165 1 49 A> 3 1 4
166 0 49 <A 1 1 4
+ 175 -9 <A 111 4
176 -8 4 B> 111 4
+ 187 3 4 211 B> 4
188 2 4 211 <A 3
189 3 4 210 4 A> 3
190 2 4 210 4 <A 1
191 1 4 210 <A 1 1
192 2 4 29 4 A> 1 1
+ 194 4 4 29 43 A>
195 5 4 29 44 B>
196 4 4 29 44 <B 4
197 3 4 29 43 <A 3 4
+ 200 0 4 29 <A 13 3 4
201 1 4 28 4 A> 13 3 4
+ 204 4 4 28 44 A> 3 4
205 3 4 28 44 <A 1 4
+ 209 -1 4 28 <A 15 4
210 0 4 27 4 A> 15 4
+ 215 5 4 27 46 A> 4
216 4 4 27 46 <A 1
+ 222 -2 4 27 <A 17
223 -1 4 26 4 A> 17
+ 230 6 4 26 48 A>
231 7 4 26 49 B>
232 6 4 26 49 <B 4
233 5 4 26 48 <A 3 4
+ 241 -3 4 26 <A 18 3 4
242 -2 4 25 4 A> 18 3 4
+ 250 6 4 25 49 A> 3 4
251 5 4 25 49 <A 1 4
+ 260 -4 4 25 <A 110 4
261 -3 4 24 4 A> 110 4
+ 271 7 4 24 411 A> 4
272 6 4 24 411 <A 1
+ 283 -5 4 24 <A 112
284 -4 4 23 4 A> 112
+ 296 8 4 23 413 A>
297 9 4 23 414 B>
298 8 4 23 414 <B 4
299 7 4 23 413 <A 3 4
+ 312 -6 4 23 <A 113 3 4
313 -5 4 2 2 4 A> 113 3 4
+ 326 8 4 2 2 414 A> 3 4
327 7 4 2 2 414 <A 1 4
+ 341 -7 4 2 2 <A 115 4
342 -6 4 2 4 A> 115 4
+ 357 9 4 2 416 A> 4
358 8 4 2 416 <A 1
+ 374 -8 4 2 <A 117
375 -7 4 4 A> 117
+ 392 10 419 A>
393 11 420 B>
394 10 420 <B 4
395 9 419 <A 3 4
+ 414 -10 <A 119 3 4
415 -9 4 B> 119 3 4
+ 434 10 4 219 B> 3 4
435 11 4 219 3 A> 4
436 10 4 219 3 <A 1
437 9 4 219 <A 1 1
438 10 4 218 4 A> 1 1
+ 440 12 4 218 43 A>
441 13 4 218 44 B>
442 12 4 218 44 <B 4
443 11 4 218 43 <A 3 4
+ 446 8 4 218 <A 13 3 4
447 9 4 217 4 A> 13 3 4
+ 450 12 4 217 44 A> 3 4
451 11 4 217 44 <A 1 4
+ 455 7 4 217 <A 15 4
456 8 4 216 4 A> 15 4
+ 461 13 4 216 46 A> 4
462 12 4 216 46 <A 1
+ 468 6 4 216 <A 17
469 7 4 215 4 A> 17
+ 476 14 4 215 48 A>
477 15 4 215 49 B>
478 14 4 215 49 <B 4
479 13 4 215 48 <A 3 4
+ 487 5 4 215 <A 18 3 4
488 6 4 214 4 A> 18 3 4
+ 496 14 4 214 49 A> 3 4
497 13 4 214 49 <A 1 4
+ 506 4 4 214 <A 110 4
507 5 4 213 4 A> 110 4
+ 517 15 4 213 411 A> 4
518 14 4 213 411 <A 1
+ 529 3 4 213 <A 112
530 4 4 212 4 A> 112
+ 542 16 4 212 413 A>
543 17 4 212 414 B>
544 16 4 212 414 <B 4
545 15 4 212 413 <A 3 4
+ 558 2 4 212 <A 113 3 4
559 3 4 211 4 A> 113 3 4
+ 572 16 4 211 414 A> 3 4
573 15 4 211 414 <A 1 4
+ 587 1 4 211 <A 115 4
588 2 4 210 4 A> 115 4
+ 603 17 4 210 416 A> 4
604 16 4 210 416 <A 1
+ 620 0 4 210 <A 117
621 1 4 29 4 A> 117
+ 638 18 4 29 418 A>
639 19 4 29 419 B>
After 639 steps (201 lines): state = B.
Produced 29 nonzeros.
Tape index 19, scanned [-10 .. 18].
| State | Count | Execution count | First in step | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||
| A | 542 | 19 | 222 | 30 | 19 | 242 | 10 | 0 | 21 | 34 | 6 | 5 | 19 |
| B | 97 | 10 | 49 | 10 | 9 | 19 | 1 | 9 | 13 | 4 | 2 | ||