Comment: This TM produces 10249 nonzeros in 98364599 steps. Comment: The halting transition has been changed to produce a 1 Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 5 |
on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||||
A | 4RB | 4RA | 4RA | 1LA | 1LA | 1LB | 4 | right | B | 4 | right | A | 4 | right | A | 1 | left | A | 1 | left | A | 1 | left | B |
B | 4LB | 2RB | 5LB | 3RA | 3LA | 1RH | 4 | left | B | 2 | right | B | 5 | left | B | 3 | right | A | 3 | left | A | 1 | right | H |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-bck-macro machine. The same TM as 1-bck-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 4 B> 2 0 4 <B 4 3 -1 <A 3 4 4 0 4 B> 3 4 5 1 4 3 A> 4 6 0 4 3 <A 1 7 -1 4 <A 1 1 8 -2 <A 13 9 -1 4 B> 13 + 12 2 4 23 B> 13 1 4 23 <B 4 + 16 -2 4 <B 53 4 17 -3 <A 3 53 4 18 -2 4 B> 3 53 4 19 -1 4 3 A> 53 4 20 -2 4 3 <B 1 5 5 4 21 -1 4 3 A> 1 5 5 4 22 0 4 3 4 A> 5 5 4 23 -1 4 3 4 <B 1 5 4 24 -2 4 3 <A 3 1 5 4 25 -3 4 <A 1 3 1 5 4 26 -4 <A 1 1 3 1 5 4 27 -3 4 B> 1 1 3 1 5 4 + 29 -1 4 2 2 B> 3 1 5 4 30 0 4 2 2 3 A> 1 5 4 31 1 4 2 2 3 4 A> 5 4 32 0 4 2 2 3 4 <B 1 4 33 -1 4 2 2 3 <A 3 1 4 34 -2 4 2 2 <A 1 3 1 4 35 -1 4 2 4 A> 1 3 1 4 36 0 4 2 4 4 A> 3 1 4 37 -1 4 2 4 4 <A 1 1 4 + 39 -3 4 2 <A 14 4 40 -2 4 4 A> 14 4 + 44 2 46 A> 4 45 1 46 <A 1 + 51 -5 <A 17 52 -4 4 B> 17 + 59 3 4 27 B> 60 2 4 27 <B 4 + 67 -5 4 <B 57 4 68 -6 <A 3 57 4 69 -5 4 B> 3 57 4 70 -4 4 3 A> 57 4 71 -5 4 3 <B 1 56 4 72 -4 4 3 A> 1 56 4 73 -3 4 3 4 A> 56 4 74 -4 4 3 4 <B 1 55 4 75 -5 4 3 <A 3 1 55 4 76 -6 4 <A 1 3 1 55 4 77 -7 <A 1 1 3 1 55 4 78 -6 4 B> 1 1 3 1 55 4 + 80 -4 4 2 2 B> 3 1 55 4 81 -3 4 2 2 3 A> 1 55 4 82 -2 4 2 2 3 4 A> 55 4 83 -3 4 2 2 3 4 <B 1 54 4 84 -4 4 2 2 3 <A 3 1 54 4 85 -5 4 2 2 <A 1 3 1 54 4 86 -4 4 2 4 A> 1 3 1 54 4 87 -3 4 2 4 4 A> 3 1 54 4 88 -4 4 2 4 4 <A 1 1 54 4 + 90 -6 4 2 <A 14 54 4 91 -5 4 4 A> 14 54 4 + 95 -1 46 A> 54 4 96 -2 46 <B 1 53 4 97 -3 45 <A 3 1 53 4 + 102 -8 <A 15 3 1 53 4 103 -7 4 B> 15 3 1 53 4 + 108 -2 4 25 B> 3 1 53 4 109 -1 4 25 3 A> 1 53 4 110 0 4 25 3 4 A> 53 4 111 -1 4 25 3 4 <B 1 5 5 4 112 -2 4 25 3 <A 3 1 5 5 4 113 -3 4 25 <A 1 3 1 5 5 4 114 -2 4 24 4 A> 1 3 1 5 5 4 115 -1 4 24 4 4 A> 3 1 5 5 4 116 -2 4 24 4 4 <A 1 1 5 5 4 + 118 -4 4 24 <A 14 5 5 4 119 -3 4 23 4 A> 14 5 5 4 + 123 1 4 23 45 A> 5 5 4 124 0 4 23 45 <B 1 5 4 125 -1 4 23 44 <A 3 1 5 4 + 129 -5 4 23 <A 14 3 1 5 4 130 -4 4 2 2 4 A> 14 3 1 5 4 + 134 0 4 2 2 45 A> 3 1 5 4 135 -1 4 2 2 45 <A 1 1 5 4 + 140 -6 4 2 2 <A 17 5 4 141 -5 4 2 4 A> 17 5 4 + 148 2 4 2 48 A> 5 4 149 1 4 2 48 <B 1 4 150 0 4 2 47 <A 3 1 4 + 157 -7 4 2 <A 17 3 1 4 158 -6 4 4 A> 17 3 1 4 + 165 1 49 A> 3 1 4 166 0 49 <A 1 1 4 + 175 -9 <A 111 4 176 -8 4 B> 111 4 + 187 3 4 211 B> 4 188 2 4 211 <A 3 189 3 4 210 4 A> 3 190 2 4 210 4 <A 1 191 1 4 210 <A 1 1 192 2 4 29 4 A> 1 1 + 194 4 4 29 43 A> 195 5 4 29 44 B> 196 4 4 29 44 <B 4 197 3 4 29 43 <A 3 4 + 200 0 4 29 <A 13 3 4 201 1 4 28 4 A> 13 3 4 + 204 4 4 28 44 A> 3 4 205 3 4 28 44 <A 1 4 + 209 -1 4 28 <A 15 4 210 0 4 27 4 A> 15 4 + 215 5 4 27 46 A> 4 216 4 4 27 46 <A 1 + 222 -2 4 27 <A 17 223 -1 4 26 4 A> 17 + 230 6 4 26 48 A> 231 7 4 26 49 B> 232 6 4 26 49 <B 4 233 5 4 26 48 <A 3 4 + 241 -3 4 26 <A 18 3 4 242 -2 4 25 4 A> 18 3 4 + 250 6 4 25 49 A> 3 4 251 5 4 25 49 <A 1 4 + 260 -4 4 25 <A 110 4 261 -3 4 24 4 A> 110 4 + 271 7 4 24 411 A> 4 272 6 4 24 411 <A 1 + 283 -5 4 24 <A 112 284 -4 4 23 4 A> 112 + 296 8 4 23 413 A> 297 9 4 23 414 B> 298 8 4 23 414 <B 4 299 7 4 23 413 <A 3 4 + 312 -6 4 23 <A 113 3 4 313 -5 4 2 2 4 A> 113 3 4 + 326 8 4 2 2 414 A> 3 4 327 7 4 2 2 414 <A 1 4 + 341 -7 4 2 2 <A 115 4 342 -6 4 2 4 A> 115 4 + 357 9 4 2 416 A> 4 358 8 4 2 416 <A 1 + 374 -8 4 2 <A 117 375 -7 4 4 A> 117 + 392 10 419 A> 393 11 420 B> 394 10 420 <B 4 395 9 419 <A 3 4 + 414 -10 <A 119 3 4 415 -9 4 B> 119 3 4 + 434 10 4 219 B> 3 4 435 11 4 219 3 A> 4 436 10 4 219 3 <A 1 437 9 4 219 <A 1 1 438 10 4 218 4 A> 1 1 + 440 12 4 218 43 A> 441 13 4 218 44 B> 442 12 4 218 44 <B 4 443 11 4 218 43 <A 3 4 + 446 8 4 218 <A 13 3 4 447 9 4 217 4 A> 13 3 4 + 450 12 4 217 44 A> 3 4 451 11 4 217 44 <A 1 4 + 455 7 4 217 <A 15 4 456 8 4 216 4 A> 15 4 + 461 13 4 216 46 A> 4 462 12 4 216 46 <A 1 + 468 6 4 216 <A 17 469 7 4 215 4 A> 17 + 476 14 4 215 48 A> 477 15 4 215 49 B> 478 14 4 215 49 <B 4 479 13 4 215 48 <A 3 4 + 487 5 4 215 <A 18 3 4 488 6 4 214 4 A> 18 3 4 + 496 14 4 214 49 A> 3 4 497 13 4 214 49 <A 1 4 + 506 4 4 214 <A 110 4 507 5 4 213 4 A> 110 4 + 517 15 4 213 411 A> 4 518 14 4 213 411 <A 1 + 529 3 4 213 <A 112 530 4 4 212 4 A> 112 + 542 16 4 212 413 A> 543 17 4 212 414 B> 544 16 4 212 414 <B 4 545 15 4 212 413 <A 3 4 + 558 2 4 212 <A 113 3 4 559 3 4 211 4 A> 113 3 4 + 572 16 4 211 414 A> 3 4 573 15 4 211 414 <A 1 4 + 587 1 4 211 <A 115 4 588 2 4 210 4 A> 115 4 + 603 17 4 210 416 A> 4 604 16 4 210 416 <A 1 + 620 0 4 210 <A 117 621 1 4 29 4 A> 117 + 638 18 4 29 418 A> 639 19 4 29 419 B> After 639 steps (201 lines): state = B. Produced 29 nonzeros. Tape index 19, scanned [-10 .. 18].
State | Count | Execution count | First in step | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||
A | 542 | 19 | 222 | 30 | 19 | 242 | 10 | 0 | 21 | 34 | 6 | 5 | 19 |
B | 97 | 10 | 49 | 10 | 9 | 19 | 1 | 9 | 13 | 4 | 2 |