2-state 6-symbol #b (T.J. & S. Ligocki)

Comment: This TM produces 10249 nonzeros in 98364599 steps.
Comment: The halting transition has been changed to produce a 1

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on
5
on 0 on 1 on 2 on 3 on 4 on 5
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 4RB 4RA 4RA 1LA 1LA 1LB 4 right B 4 right A 4 right A 1 left A 1 left A 1 left B
B 4LB 2RB 5LB 3RA 3LA 1RH 4 left B 2 right B 5 left B 3 right A 3 left A 1 right H
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  4 B>
     2     0  4 <B 4
     3    -1  <A 3 4
     4     0  4 B> 3 4
     5     1  4 3 A> 4
     6     0  4 3 <A 1
     7    -1  4 <A 1 1
     8    -2  <A 13
     9    -1  4 B> 13
+   12     2  4 23 B>
    13     1  4 23 <B 4
+   16    -2  4 <B 53 4
    17    -3  <A 3 53 4
    18    -2  4 B> 3 53 4
    19    -1  4 3 A> 53 4
    20    -2  4 3 <B 1 5 5 4
    21    -1  4 3 A> 1 5 5 4
    22     0  4 3 4 A> 5 5 4
    23    -1  4 3 4 <B 1 5 4
    24    -2  4 3 <A 3 1 5 4
    25    -3  4 <A 1 3 1 5 4
    26    -4  <A 1 1 3 1 5 4
    27    -3  4 B> 1 1 3 1 5 4
+   29    -1  4 2 2 B> 3 1 5 4
    30     0  4 2 2 3 A> 1 5 4
    31     1  4 2 2 3 4 A> 5 4
    32     0  4 2 2 3 4 <B 1 4
    33    -1  4 2 2 3 <A 3 1 4
    34    -2  4 2 2 <A 1 3 1 4
    35    -1  4 2 4 A> 1 3 1 4
    36     0  4 2 4 4 A> 3 1 4
    37    -1  4 2 4 4 <A 1 1 4
+   39    -3  4 2 <A 14 4
    40    -2  4 4 A> 14 4
+   44     2  46 A> 4
    45     1  46 <A 1
+   51    -5  <A 17
    52    -4  4 B> 17
+   59     3  4 27 B>
    60     2  4 27 <B 4
+   67    -5  4 <B 57 4
    68    -6  <A 3 57 4
    69    -5  4 B> 3 57 4
    70    -4  4 3 A> 57 4
    71    -5  4 3 <B 1 56 4
    72    -4  4 3 A> 1 56 4
    73    -3  4 3 4 A> 56 4
    74    -4  4 3 4 <B 1 55 4
    75    -5  4 3 <A 3 1 55 4
    76    -6  4 <A 1 3 1 55 4
    77    -7  <A 1 1 3 1 55 4
    78    -6  4 B> 1 1 3 1 55 4
+   80    -4  4 2 2 B> 3 1 55 4
    81    -3  4 2 2 3 A> 1 55 4
    82    -2  4 2 2 3 4 A> 55 4
    83    -3  4 2 2 3 4 <B 1 54 4
    84    -4  4 2 2 3 <A 3 1 54 4
    85    -5  4 2 2 <A 1 3 1 54 4
    86    -4  4 2 4 A> 1 3 1 54 4
    87    -3  4 2 4 4 A> 3 1 54 4
    88    -4  4 2 4 4 <A 1 1 54 4
+   90    -6  4 2 <A 14 54 4
    91    -5  4 4 A> 14 54 4
+   95    -1  46 A> 54 4
    96    -2  46 <B 1 53 4
    97    -3  45 <A 3 1 53 4
+  102    -8  <A 15 3 1 53 4
   103    -7  4 B> 15 3 1 53 4
+  108    -2  4 25 B> 3 1 53 4
   109    -1  4 25 3 A> 1 53 4
   110     0  4 25 3 4 A> 53 4
   111    -1  4 25 3 4 <B 1 5 5 4
   112    -2  4 25 3 <A 3 1 5 5 4
   113    -3  4 25 <A 1 3 1 5 5 4
   114    -2  4 24 4 A> 1 3 1 5 5 4
   115    -1  4 24 4 4 A> 3 1 5 5 4
   116    -2  4 24 4 4 <A 1 1 5 5 4
+  118    -4  4 24 <A 14 5 5 4
   119    -3  4 23 4 A> 14 5 5 4
+  123     1  4 23 45 A> 5 5 4
   124     0  4 23 45 <B 1 5 4
   125    -1  4 23 44 <A 3 1 5 4
+  129    -5  4 23 <A 14 3 1 5 4
   130    -4  4 2 2 4 A> 14 3 1 5 4
+  134     0  4 2 2 45 A> 3 1 5 4
   135    -1  4 2 2 45 <A 1 1 5 4
+  140    -6  4 2 2 <A 17 5 4
   141    -5  4 2 4 A> 17 5 4
+  148     2  4 2 48 A> 5 4
   149     1  4 2 48 <B 1 4
   150     0  4 2 47 <A 3 1 4
+  157    -7  4 2 <A 17 3 1 4
   158    -6  4 4 A> 17 3 1 4
+  165     1  49 A> 3 1 4
   166     0  49 <A 1 1 4
+  175    -9  <A 111 4
   176    -8  4 B> 111 4
+  187     3  4 211 B> 4
   188     2  4 211 <A 3
   189     3  4 210 4 A> 3
   190     2  4 210 4 <A 1
   191     1  4 210 <A 1 1
   192     2  4 29 4 A> 1 1
+  194     4  4 29 43 A>
   195     5  4 29 44 B>
   196     4  4 29 44 <B 4
   197     3  4 29 43 <A 3 4
+  200     0  4 29 <A 13 3 4
   201     1  4 28 4 A> 13 3 4
+  204     4  4 28 44 A> 3 4
   205     3  4 28 44 <A 1 4
+  209    -1  4 28 <A 15 4
   210     0  4 27 4 A> 15 4
+  215     5  4 27 46 A> 4
   216     4  4 27 46 <A 1
+  222    -2  4 27 <A 17
   223    -1  4 26 4 A> 17
+  230     6  4 26 48 A>
   231     7  4 26 49 B>
   232     6  4 26 49 <B 4
   233     5  4 26 48 <A 3 4
+  241    -3  4 26 <A 18 3 4
   242    -2  4 25 4 A> 18 3 4
+  250     6  4 25 49 A> 3 4
   251     5  4 25 49 <A 1 4
+  260    -4  4 25 <A 110 4
   261    -3  4 24 4 A> 110 4
+  271     7  4 24 411 A> 4
   272     6  4 24 411 <A 1
+  283    -5  4 24 <A 112
   284    -4  4 23 4 A> 112
+  296     8  4 23 413 A>
   297     9  4 23 414 B>
   298     8  4 23 414 <B 4
   299     7  4 23 413 <A 3 4
+  312    -6  4 23 <A 113 3 4
   313    -5  4 2 2 4 A> 113 3 4
+  326     8  4 2 2 414 A> 3 4
   327     7  4 2 2 414 <A 1 4
+  341    -7  4 2 2 <A 115 4
   342    -6  4 2 4 A> 115 4
+  357     9  4 2 416 A> 4
   358     8  4 2 416 <A 1
+  374    -8  4 2 <A 117
   375    -7  4 4 A> 117
+  392    10  419 A>
   393    11  420 B>
   394    10  420 <B 4
   395     9  419 <A 3 4
+  414   -10  <A 119 3 4
   415    -9  4 B> 119 3 4
+  434    10  4 219 B> 3 4
   435    11  4 219 3 A> 4
   436    10  4 219 3 <A 1
   437     9  4 219 <A 1 1
   438    10  4 218 4 A> 1 1
+  440    12  4 218 43 A>
   441    13  4 218 44 B>
   442    12  4 218 44 <B 4
   443    11  4 218 43 <A 3 4
+  446     8  4 218 <A 13 3 4
   447     9  4 217 4 A> 13 3 4
+  450    12  4 217 44 A> 3 4
   451    11  4 217 44 <A 1 4
+  455     7  4 217 <A 15 4
   456     8  4 216 4 A> 15 4
+  461    13  4 216 46 A> 4
   462    12  4 216 46 <A 1
+  468     6  4 216 <A 17
   469     7  4 215 4 A> 17
+  476    14  4 215 48 A>
   477    15  4 215 49 B>
   478    14  4 215 49 <B 4
   479    13  4 215 48 <A 3 4
+  487     5  4 215 <A 18 3 4
   488     6  4 214 4 A> 18 3 4
+  496    14  4 214 49 A> 3 4
   497    13  4 214 49 <A 1 4
+  506     4  4 214 <A 110 4
   507     5  4 213 4 A> 110 4
+  517    15  4 213 411 A> 4
   518    14  4 213 411 <A 1
+  529     3  4 213 <A 112
   530     4  4 212 4 A> 112
+  542    16  4 212 413 A>
   543    17  4 212 414 B>
   544    16  4 212 414 <B 4
   545    15  4 212 413 <A 3 4
+  558     2  4 212 <A 113 3 4
   559     3  4 211 4 A> 113 3 4
+  572    16  4 211 414 A> 3 4
   573    15  4 211 414 <A 1 4
+  587     1  4 211 <A 115 4
   588     2  4 210 4 A> 115 4
+  603    17  4 210 416 A> 4
   604    16  4 210 416 <A 1
+  620     0  4 210 <A 117
   621     1  4 29 4 A> 117
+  638    18  4 29 418 A>
   639    19  4 29 419 B>

After 639 steps (201 lines): state = B.
Produced     29 nonzeros.
Tape index 19, scanned [-10 .. 18].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 5 on 0 on 1 on 2 on 3 on 4 on 5
A 542 19 222 30 19 242 10 0 21 34 6 5 19
B 97 10 49 10 9 19   1 9 13 4 2  
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:13:12 CEST 2010