2-state 6-symbol #a (T.J. & S. Ligocki)

Comment: This TM produces 10574 nonzeros in 94842383 steps.
Comment: The halting transition on B2 is unused

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on
5
on 0 on 1 on 2 on 3 on 4 on 5
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 5RB 5RA 3RH 1RB 3LA 1LA 5 right B 5 right A 3 right H 1 right B 3 left A 1 left A
B 4LB 1RB 4LH 2RA 5LB 5LA 4 left B 1 right B 4 left H 2 right A 5 left B 5 left A
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . . . . 0
     1    1 B . . . . . 50
     2    0 B . . . . . 54
     3   -1 A . . . . .054
     4    0 B . . . . .554
     5   -1 A . . . . .554
     6   -2 A . . . . 0154
     7   -1 B . . . . 5154
     8    0 B . . . . 5154
     9   -1 A . . . . 5154
    10    0 A . . . . 5554
    11   -1 A . . . . 5514
    12   -2 A . . . . 5114
    13   -3 A . . . .01114
    14   -2 B . . . .51114
    15   -1 B . . . .51114
    16    0 B . . . .51114
    17    1 B . . . .51114
    18    0 B . . . .51115
    19    1 B . . . .51115
    20    0 A . . . .51115
    21    1 A . . . .51155
    22    0 A . . . .51151
    23   -1 A . . . .51111
    24    0 A . . . .51511
    25    1 A . . . .51551
    26    2 A . . . .515550
    27    3 B . . . .5155550
    28    2 B . . . .5155554
    29    1 A . . . .5155554
    30    0 A . . . .5155154
    31   -1 A . . . .5151154
    32   -2 A . . . .5111154
    33   -1 A . . . .5511154
    34    0 A . . . .5551154
    35    1 A . . . .5555154
    36    2 A . . . .5555554
    37    1 A . . . .5555514
    38    0 A . . . .5555114
    39   -1 A . . . .5551114
    40   -2 A . . . .5511114
    41   -3 A . . . .5111114
    42   -4 A . . . 01111114
    43   -3 B . . . 51111114
    44   -2 B . . . 51111114
    45   -1 B . . . 51111114
    46    0 B . . . 51111114
    47    1 B . . . 51111114
    48    2 B . . . 51111114
    49    3 B . . . 51111114
    50    2 B . . . 51111115
    51    3 B . . . 51111115
    52    2 A . . . 51111115
    53    3 A . . . 51111155
    54    2 A . . . 51111151
    55    1 A . . . 51111111
    56    2 A . . . 51111511
    57    3 A . . . 51111551
    58    4 A . . . 511115550
    59    5 B . . . 5111155550
    60    4 B . . . 5111155554
    61    3 A . . . 5111155554
    62    2 A . . . 5111155154
    63    1 A . . . 5111151154
    64    0 A . . . 5111111154
    65    1 A . . . 5111511154
    66    2 A . . . 5111551154
    67    3 A . . . 5111555154
    68    4 A . . . 5111555554
    69    3 A . . . 5111555514
    70    2 A . . . 5111555114
    71    1 A . . . 5111551114
    72    0 A . . . 5111511114
    73   -1 A . . . 5111111114
    74    0 A . . . 5115111114
    75    1 A . . . 5115511114
    76    2 A . . . 5115551114
    77    3 A . . . 5115555114
    78    4 A . . . 5115555514
    79    5 A . . . 5115555554
    80    4 A . . . 5115555553
    81    3 A . . . 5115555513
    82    2 A . . . 5115555113
    83    1 A . . . 5115551113
    84    0 A . . . 5115511113
    85   -1 A . . . 5115111113
    86   -2 A . . . 5111111113
    87   -1 A . . . 5151111113
    88    0 A . . . 5155111113
    89    1 A . . . 5155511113
    90    2 A . . . 5155551113
    91    3 A . . . 5155555113
    92    4 A . . . 5155555513
    93    5 A . . . 5155555553
    94    6 B . . . 51555555510
    95    5 B . . . 51555555514
    96    6 B . . . 51555555514
    97    5 B . . . 51555555515
    98    6 B . . . 51555555515
    99    5 A . . . 51555555515
   100    6 A . . . 51555555555
   101    5 A . . . 51555555551
   102    4 A . . . 51555555511
   103    3 A . . . 51555555111
   104    2 A . . . 51555551111
   105    1 A . . . 51555511111
   106    0 A . . . 51555111111
   107   -1 A . . . 51551111111
   108   -2 A . . . 51511111111
   109   -3 A . . . 51111111111
   110   -2 A . . . 55111111111
   111   -1 A . . . 55511111111
   112    0 A . . . 55551111111
   113    1 A . . . 55555111111
   114    2 A . . . 55555511111
   115    3 A . . . 55555551111
   116    4 A . . . 55555555111
   117    5 A . . . 55555555511
   118    6 A . . . 55555555551
   119    7 A . . . 555555555550
   120    8 B . . . 5555555555550
   121    7 B . . . 5555555555554
   122    6 A . . . 5555555555554
   123    5 A . . . 5555555555154
   124    4 A . . . 5555555551154
   125    3 A . . . 5555555511154
   126    2 A . . . 5555555111154
   127    1 A . . . 5555551111154
   128    0 A . . . 5555511111154
   129   -1 A . . . 5555111111154
   130   -2 A . . . 5551111111154
   131   -3 A . . . 5511111111154
   132   -4 A . . . 5111111111154
   133   -5 A . . .01111111111154
   134   -4 B . . .51111111111154
   135   -3 B . . .51111111111154
   136   -2 B . . .51111111111154
   137   -1 B . . .51111111111154
   138    0 B . . .51111111111154
   139    1 B . . .51111111111154
   140    2 B . . .51111111111154
   141    3 B . . .51111111111154
   142    4 B . . .51111111111154
   143    5 B . . .51111111111154
   144    6 B . . .51111111111154
   145    7 B . . .51111111111154
   146    6 A . . .51111111111154
   147    7 A . . .51111111111554
   148    6 A . . .51111111111514
   149    5 A . . .51111111111114
   150    6 A . . .51111111115114
   151    7 A . . .51111111115514
   152    8 A . . .51111111115554
   153    7 A . . .51111111115553
   154    6 A . . .51111111115513
   155    5 A . . .51111111115113
   156    4 A . . .51111111111113
   157    5 A . . .51111111151113
   158    6 A . . .51111111155113
   159    7 A . . .51111111155513
   160    8 A . . .51111111155553
   161    9 B . . .511111111555510
   162    8 B . . .511111111555514
   163    9 B . . .511111111555514
   164    8 B . . .511111111555515
   165    9 B . . .511111111555515
   166    8 A . . .511111111555515
   167    9 A . . .511111111555555
   168    8 A . . .511111111555551
   169    7 A . . .511111111555511
   170    6 A . . .511111111555111
   171    5 A . . .511111111551111
   172    4 A . . .511111111511111
   173    3 A . . .511111111111111
   174    4 A . . .511111115111111
   175    5 A . . .511111115511111
   176    6 A . . .511111115551111
   177    7 A . . .511111115555111
   178    8 A . . .511111115555511
   179    9 A . . .511111115555551
   180   10 A . . .5111111155555550
   181   11 B . . .51111111555555550
   182   10 B . . .51111111555555554
   183    9 A . . .51111111555555554
   184    8 A . . .51111111555555154
   185    7 A . . .51111111555551154
   186    6 A . . .51111111555511154
   187    5 A . . .51111111555111154
   188    4 A . . .51111111551111154
   189    3 A . . .51111111511111154
   190    2 A . . .51111111111111154
   191    3 A . . .51111115111111154
   192    4 A . . .51111115511111154
   193    5 A . . .51111115551111154
   194    6 A . . .51111115555111154
   195    7 A . . .51111115555511154
   196    8 A . . .51111115555551154
   197    9 A . . .51111115555555154
   198   10 A . . .51111115555555554
   199    9 A . . .51111115555555514
   200    8 A . . .51111115555555114

After 200 steps (201 lines): state = A.
Produced     17 nonzeros.
Tape index 8, scanned [-5 .. 11].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 5 on 0 on 1 on 2 on 3 on 4 on 5
A 150 10 65   2 2 71 0 9   93 79 5
B 50 7 27     4 12 1 7     17 2
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:13:11 CEST 2010