Comment: This TM produces 10574 nonzeros in 94842383 steps. Comment: The halting transition on B2 is unused
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 5 |
on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||||
| A | 5RB | 5RA | 3RH | 1RB | 3LA | 1LA | 5 | right | B | 5 | right | A | 3 | right | H | 1 | right | B | 3 | left | A | 1 | left | A |
| B | 4LB | 1RB | 4LH | 2RA | 5LB | 5LA | 4 | left | B | 1 | right | B | 4 | left | H | 2 | right | A | 5 | left | B | 5 | left | A |
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-bck-macro machine.
Simulation is done as 1-bck-macro machine with pure additive config-TRs.
Pushing initial machine.
Pushing macro factor 1.
Pushing BCK machine.
Steps BasSteps BasTpos Tape contents
0 0 0 (0)A>
1 1 1 (5)B>
2 3 -1 <A(5) 4
3 6 -2 <A(1) 5 4
4 8 0 5 (1)B> 5 4
5 12 -2 5 <A(1) 1 4
6 13 -3 <A(1) 12 4
7 15 -1 5 (1)B> 12 4
8 17 1 5 12 (1)B> 4
9 23 -1 5 12 <A(1) 1
10 25 1 5 1 5 (5)A> 1
11 26 2 5 1 52 (5)A>
12 27 3 5 1 53 (5)B>
13 29 1 5 1 53 <A(5) 4
14 30 0 5 1 52 <A(1) 5 4
15 32 -2 5 1 <A(1) 12 5 4
16 34 0 52 (5)A> 12 5 4
17 36 2 54 (5)A> 5 4
18 38 0 54 <A(1) 1 4
19 42 -4 <A(1) 15 4
20 44 -2 5 (1)B> 15 4
21 49 3 5 15 (1)B> 4
22 55 1 5 15 <A(1) 1
23 57 3 5 14 5 (5)A> 1
24 58 4 5 14 52 (5)A>
25 59 5 5 14 53 (5)B>
26 61 3 5 14 53 <A(5) 4
27 62 2 5 14 52 <A(1) 5 4
28 64 0 5 14 <A(1) 12 5 4
29 66 2 5 13 5 (5)A> 12 5 4
30 68 4 5 13 53 (5)A> 5 4
31 70 2 5 13 53 <A(1) 1 4
32 73 -1 5 13 <A(1) 14 4
33 75 1 5 12 5 (5)A> 14 4
34 79 5 5 12 55 (5)A> 4
35 81 3 5 12 55 <A(1) 3
36 86 -2 5 12 <A(1) 15 3
37 88 0 5 1 5 (5)A> 15 3
38 93 5 5 1 56 (5)A> 3
39 94 6 5 1 57 (1)B>
40 102 4 5 1 57 <A(1) 1
41 109 -3 5 1 <A(1) 18
>> Try to prove a PA-CTR with 2 Vars...
0 0 0 [*]* 15+V(1) <A(1) 11+V(2)
1 2 2 [*]* 14+V(1) 5 (5)A> 11+V(2)
2 3+V(2) 3+V(2) [*]* 14+V(1) 52+V(2) (5)A>
3 4+V(2) 4+V(2) [*]* 14+V(1) 53+V(2) (5)B>
4 6+V(2) 2+V(2) [*]* 14+V(1) 53+V(2) <A(5) 4
5 7+V(2) 1+V(2) [*]* 14+V(1) 52+V(2) <A(1) 5 4
6 9+2*V(2) -1 [*]* 14+V(1) <A(1) 12+V(2) 5 4
7 11+2*V(2) 1 [*]* 13+V(1) 5 (5)A> 12+V(2) 5 4
8 13+3*V(2) 3+V(2) [*]* 13+V(1) 53+V(2) (5)A> 5 4
9 15+3*V(2) 1+V(2) [*]* 13+V(1) 53+V(2) <A(1) 1 4
10 18+4*V(2) -2 [*]* 13+V(1) <A(1) 14+V(2) 4
11 20+4*V(2) 0 [*]* 12+V(1) 5 (5)A> 14+V(2) 4
12 24+5*V(2) 4+V(2) [*]* 12+V(1) 55+V(2) (5)A> 4
13 26+5*V(2) 2+V(2) [*]* 12+V(1) 55+V(2) <A(1) 3
14 31+6*V(2) -3 [*]* 12+V(1) <A(1) 15+V(2) 3
15 33+6*V(2) -1 [*]* 11+V(1) 5 (5)A> 15+V(2) 3
16 38+7*V(2) 4+V(2) [*]* 11+V(1) 56+V(2) (5)A> 3
17 39+7*V(2) 5+V(2) [*]* 11+V(1) 57+V(2) (1)B>
18 47+7*V(2) 3+V(2) [*]* 11+V(1) 57+V(2) <A(1) 1
19 54+8*V(2) -4 [*]* 11+V(1) <A(1) 18+V(2)
<< Success! ==> defined new CTR 1 (PA)
42 111 -1 52 (5)A> 18
43 119 7 510 (5)A>
44 120 8 511 (5)B>
45 122 6 511 <A(5) 4
46 123 5 510 <A(1) 5 4
47 133 -5 <A(1) 110 5 4
48 135 -3 5 (1)B> 110 5 4
49 145 7 5 110 (1)B> 5 4
50 149 5 5 110 <A(1) 1 4
51 151 7 5 19 5 (5)A> 1 4
52 152 8 5 19 52 (5)A> 4
53 154 6 5 19 52 <A(1) 3
54 156 4 5 19 <A(1) 12 3
55 158 6 5 18 5 (5)A> 12 3
56 160 8 5 18 53 (5)A> 3
57 161 9 5 18 54 (1)B>
58 169 7 5 18 54 <A(1) 1
59 173 3 5 18 <A(1) 15
>> Try to prove a PPA-CTR with 2 Vars...
0 0 0 51+V(1) 1 <A(1) 15+V(2)
1 2 2 52+V(1) (5)A> 15+V(2)
2 7+V(2) 7+V(2) 57+V(1)+V(2) (5)A>
3 8+V(2) 8+V(2) 58+V(1)+V(2) (5)B>
4 10+V(2) 6+V(2) 58+V(1)+V(2) <A(5) 4
5 11+V(2) 5+V(2) 57+V(1)+V(2) <A(1) 5 4
6 18+V(1)+2*V(2) -2+-1*V(1) <A(1) 17+V(1)+V(2) 5 4
7 20+V(1)+2*V(2) 0+-1*V(1) 5 (1)B> 17+V(1)+V(2) 5 4
8 27+2*V(1)+3*V(2) 7+V(2) 5 17+V(1)+V(2) (1)B> 5 4
9 31+2*V(1)+3*V(2) 5+V(2) 5 17+V(1)+V(2) <A(1) 1 4
10 33+2*V(1)+3*V(2) 7+V(2) 5 16+V(1)+V(2) 5 (5)A> 1 4
11 34+2*V(1)+3*V(2) 8+V(2) 5 16+V(1)+V(2) 52 (5)A> 4
12 36+2*V(1)+3*V(2) 6+V(2) 5 16+V(1)+V(2) 52 <A(1) 3
13 38+2*V(1)+3*V(2) 4+V(2) 5 16+V(1)+V(2) <A(1) 12 3
14 40+2*V(1)+3*V(2) 6+V(2) 5 15+V(1)+V(2) 5 (5)A> 12 3
15 42+2*V(1)+3*V(2) 8+V(2) 5 15+V(1)+V(2) 53 (5)A> 3
16 43+2*V(1)+3*V(2) 9+V(2) 5 15+V(1)+V(2) 54 (1)B>
17 51+2*V(1)+3*V(2) 7+V(2) 5 15+V(1)+V(2) 54 <A(1) 1
18 55+2*V(1)+3*V(2) 3+V(2) 5 15+V(1)+V(2) <A(1) 15
<< Success! ==> defined new CTR 2 (PPA)
59 173 3 5 18 <A(1) 15
== Executing PA-CTR 1, V(1)=3, V(2)=4, repcount=1, factor=7/4
78 259 -1 5 14 <A(1) 112
79 261 1 5 13 5 (5)A> 112
80 273 13 5 13 513 (5)A>
81 274 14 5 13 514 (5)B>
82 276 12 5 13 514 <A(5) 4
83 277 11 5 13 513 <A(1) 5 4
84 290 -2 5 13 <A(1) 113 5 4
85 292 0 5 12 5 (5)A> 113 5 4
86 305 13 5 12 514 (5)A> 5 4
87 307 11 5 12 514 <A(1) 1 4
88 321 -3 5 12 <A(1) 115 4
89 323 -1 5 1 5 (5)A> 115 4
90 338 14 5 1 516 (5)A> 4
91 340 12 5 1 516 <A(1) 3
92 356 -4 5 1 <A(1) 116 3
93 358 -2 52 (5)A> 116 3
94 374 14 518 (5)A> 3
95 375 15 519 (1)B>
96 383 13 519 <A(1) 1
97 402 -6 <A(1) 120
98 404 -4 5 (1)B> 120
99 424 16 5 120 (1)B>
100 432 14 5 120 <A(1) 1
>> Try to prove a PPA-CTR with 2 Vars...
0 0 0 51+V(1) 14 <A(1) 11+V(2)
1 2 2 51+V(1) 13 5 (5)A> 11+V(2)
2 3+V(2) 3+V(2) 51+V(1) 13 52+V(2) (5)A>
3 4+V(2) 4+V(2) 51+V(1) 13 53+V(2) (5)B>
4 6+V(2) 2+V(2) 51+V(1) 13 53+V(2) <A(5) 4
5 7+V(2) 1+V(2) 51+V(1) 13 52+V(2) <A(1) 5 4
6 9+2*V(2) -1 51+V(1) 13 <A(1) 12+V(2) 5 4
7 11+2*V(2) 1 51+V(1) 12 5 (5)A> 12+V(2) 5 4
8 13+3*V(2) 3+V(2) 51+V(1) 12 53+V(2) (5)A> 5 4
9 15+3*V(2) 1+V(2) 51+V(1) 12 53+V(2) <A(1) 1 4
10 18+4*V(2) -2 51+V(1) 12 <A(1) 14+V(2) 4
11 20+4*V(2) 0 51+V(1) 1 5 (5)A> 14+V(2) 4
12 24+5*V(2) 4+V(2) 51+V(1) 1 55+V(2) (5)A> 4
13 26+5*V(2) 2+V(2) 51+V(1) 1 55+V(2) <A(1) 3
14 31+6*V(2) -3 51+V(1) 1 <A(1) 15+V(2) 3
15 33+6*V(2) -1 52+V(1) (5)A> 15+V(2) 3
16 38+7*V(2) 4+V(2) 57+V(1)+V(2) (5)A> 3
17 39+7*V(2) 5+V(2) 58+V(1)+V(2) (1)B>
18 47+7*V(2) 3+V(2) 58+V(1)+V(2) <A(1) 1
19 55+V(1)+8*V(2) -5+-1*V(1) <A(1) 19+V(1)+V(2)
20 57+V(1)+8*V(2) -3+-1*V(1) 5 (1)B> 19+V(1)+V(2)
21 66+2*V(1)+9*V(2) 6+V(2) 5 19+V(1)+V(2) (1)B>
22 74+2*V(1)+9*V(2) 4+V(2) 5 19+V(1)+V(2) <A(1) 1
<< Success! ==> defined new CTR 3 (PPA)
100 432 14 5 120 <A(1) 1
== Executing PA-CTR 1, V(1)=15, V(2)=0, repcount=4, factor=7/4
176 984 -2 5 14 <A(1) 129
== Executing PPA-CTR 3 (once), V(1)=0, V(2)=28
198 1310 30 5 137 <A(1) 1
== Executing PA-CTR 1, V(1)=32, V(2)=0, repcount=9, factor=7/4
369 3812 -6 5 1 <A(1) 164
== Executing PPA-CTR 2 (once), V(1)=0, V(2)=59
387 4044 56 5 164 <A(1) 15
== Executing PA-CTR 1, V(1)=59, V(2)=4, repcount=15, factor=7/4
672 11214 -4 5 14 <A(1) 1110
== Executing PPA-CTR 3 (once), V(1)=0, V(2)=109
694 12269 109 5 1118 <A(1) 1
== Executing PA-CTR 1, V(1)=113, V(2)=0, repcount=29, factor=7/4
1245 36571 -7 5 12 <A(1) 1204
1246 36573 -5 5 1 5 (5)A> 1204
1247 36777 199 5 1 5205 (5)A>
1248 36778 200 5 1 5206 (5)B>
1249 36780 198 5 1 5206 <A(5) 4
1250 36781 197 5 1 5205 <A(1) 5 4
1251 36986 -8 5 1 <A(1) 1205 5 4
1252 36988 -6 52 (5)A> 1205 5 4
1253 37193 199 5207 (5)A> 5 4
1254 37195 197 5207 <A(1) 1 4
1255 37402 -10 <A(1) 1208 4
1256 37404 -8 5 (1)B> 1208 4
1257 37612 200 5 1208 (1)B> 4
1258 37618 198 5 1208 <A(1) 1
>> Try to prove a PPA-CTR with 2 Vars...
0 0 0 51+V(1) 12 <A(1) 11+V(2)
1 2 2 51+V(1) 1 5 (5)A> 11+V(2)
2 3+V(2) 3+V(2) 51+V(1) 1 52+V(2) (5)A>
3 4+V(2) 4+V(2) 51+V(1) 1 53+V(2) (5)B>
4 6+V(2) 2+V(2) 51+V(1) 1 53+V(2) <A(5) 4
5 7+V(2) 1+V(2) 51+V(1) 1 52+V(2) <A(1) 5 4
6 9+2*V(2) -1 51+V(1) 1 <A(1) 12+V(2) 5 4
7 11+2*V(2) 1 52+V(1) (5)A> 12+V(2) 5 4
8 13+3*V(2) 3+V(2) 54+V(1)+V(2) (5)A> 5 4
9 15+3*V(2) 1+V(2) 54+V(1)+V(2) <A(1) 1 4
10 19+V(1)+4*V(2) -3+-1*V(1) <A(1) 15+V(1)+V(2) 4
11 21+V(1)+4*V(2) -1+-1*V(1) 5 (1)B> 15+V(1)+V(2) 4
12 26+2*V(1)+5*V(2) 4+V(2) 5 15+V(1)+V(2) (1)B> 4
13 32+2*V(1)+5*V(2) 2+V(2) 5 15+V(1)+V(2) <A(1) 1
<< Success! ==> defined new CTR 4 (PPA)
1258 37618 198 5 1208 <A(1) 1
== Executing PA-CTR 1, V(1)=203, V(2)=0, repcount=51, factor=7/4
2227 111772 -6 5 14 <A(1) 1358
== Executing PPA-CTR 3 (once), V(1)=0, V(2)=357
2249 115059 355 5 1366 <A(1) 1
== Executing PA-CTR 1, V(1)=361, V(2)=0, repcount=91, factor=7/4
3978 349293 -9 5 12 <A(1) 1638
== Executing PPA-CTR 4 (once), V(1)=0, V(2)=637
3991 352510 630 5 1642 <A(1) 1
== Executing PA-CTR 1, V(1)=637, V(2)=0, repcount=160, factor=7/4
7031 1073470 -10 5 12 <A(1) 11121
== Executing PPA-CTR 4 (once), V(1)=0, V(2)=1120
7044 1079102 1112 5 11125 <A(1) 1
== Executing PA-CTR 1, V(1)=1120, V(2)=0, repcount=281, factor=7/4
12383 3297316 -12 5 1 <A(1) 11968
== Executing PPA-CTR 2 (once), V(1)=0, V(2)=1963
12401 3303260 1954 5 11968 <A(1) 15
== Executing PA-CTR 1, V(1)=1963, V(2)=4, repcount=491, factor=7/4
21730 10082006 -10 5 14 <A(1) 13442
== Executing PPA-CTR 3 (once), V(1)=0, V(2)=3441
21752 10113049 3435 5 13450 <A(1) 1
== Executing PA-CTR 1, V(1)=3445, V(2)=0, repcount=862, factor=7/4
38130 30940693 -13 5 12 <A(1) 16035
== Executing PPA-CTR 4 (once), V(1)=0, V(2)=6034
38143 30970895 6023 5 16039 <A(1) 1
== Executing PA-CTR 1, V(1)=6034, V(2)=0, repcount=1509, factor=7/4
66814 94768397 -13 5 13 <A(1) 110564
66815 94768399 -11 5 12 5 (5)A> 110564
66816 94778963 10553 5 12 510565 (5)A>
66817 94778964 10554 5 12 510566 (5)B>
66818 94778966 10552 5 12 510566 <A(5) 4
66819 94778967 10551 5 12 510565 <A(1) 5 4
66820 94789532 -14 5 12 <A(1) 110565 5 4
66821 94789534 -12 5 1 5 (5)A> 110565 5 4
66822 94800099 10553 5 1 510566 (5)A> 5 4
66823 94800101 10551 5 1 510566 <A(1) 1 4
66824 94810667 -15 5 1 <A(1) 110567 4
66825 94810669 -13 52 (5)A> 110567 4
66826 94821236 10554 510569 (5)A> 4
66827 94821238 10552 510569 <A(1) 3
66828 94831807 -17 <A(1) 110569 3
66829 94831809 -15 5 (1)B> 110569 3
66830 94842378 10554 5 110569 (1)B> 3
66831 94842379 10555 5 110570 (2)A>
66832 94842380 10556 5 110570 2 (5)B>
66833 94842382 10554 5 110570 2 <A(5) 4
66834 94842383 10555 5 110570 3 H> 5 4 [stop]
Lines: 136
Top steps: 135
Macro steps: 66834
Basic steps: 94842383
Tape index: 10555
nonzeros: 10574
log10(nonzeros): 4.024
log10(steps ): 7.977
Run state: stop
Input to awk program:
gohalt 1
nbs 6
T 2-state 6-symbol #a (T.J. & S. Ligocki)
: 10574 94842383
5T 5RB 5RA 3RH 1RB 3LA 1LA 4LB 1RB 4LH 2RA 5LB 5LA
C The halting transition on B2 is unused
L 10
M 201
pref sim
machv Lig26_a just simple
machv Lig26_a-r with repetitions reduced
machv Lig26_a-1 with tape symbol exponents
machv Lig26_a-m as 1-bck-macro machine
machv Lig26_a-a as 1-bck-macro machine with pure additive config-TRs
iam Lig26_a-a
mtype 1 0
mmtyp 3
r 1
H 1
mac 0
E 2
sympr
HM 1
date Tue Jul 6 22:13:11 CEST 2010
edate Tue Jul 6 22:13:12 CEST 2010
bnspeed 1
Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $
$Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $
$Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $
$Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $
$Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $
$Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $
bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:13:11 CEST 2010