Comment: This TM produces 10574 nonzeros in 94842383 steps. Comment: The halting transition on B2 is unused
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 5 |
on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||||
A | 5RB | 5RA | 3RH | 1RB | 3LA | 1LA | 5 | right | B | 5 | right | A | 3 | right | H | 1 | right | B | 3 | left | A | 1 | left | A |
B | 4LB | 1RB | 4LH | 2RA | 5LB | 5LA | 4 | left | B | 1 | right | B | 4 | left | H | 2 | right | A | 5 | left | B | 5 | left | A |
The same TM just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. The same TM as 1-bck-macro machine. Simulation is done as 1-bck-macro machine with pure additive config-TRs. Pushing initial machine. Pushing macro factor 1. Pushing BCK machine. Steps BasSteps BasTpos Tape contents 0 0 0 (0)A> 1 1 1 (5)B> 2 3 -1 <A(5) 4 3 6 -2 <A(1) 5 4 4 8 0 5 (1)B> 5 4 5 12 -2 5 <A(1) 1 4 6 13 -3 <A(1) 12 4 7 15 -1 5 (1)B> 12 4 8 17 1 5 12 (1)B> 4 9 23 -1 5 12 <A(1) 1 10 25 1 5 1 5 (5)A> 1 11 26 2 5 1 52 (5)A> 12 27 3 5 1 53 (5)B> 13 29 1 5 1 53 <A(5) 4 14 30 0 5 1 52 <A(1) 5 4 15 32 -2 5 1 <A(1) 12 5 4 16 34 0 52 (5)A> 12 5 4 17 36 2 54 (5)A> 5 4 18 38 0 54 <A(1) 1 4 19 42 -4 <A(1) 15 4 20 44 -2 5 (1)B> 15 4 21 49 3 5 15 (1)B> 4 22 55 1 5 15 <A(1) 1 23 57 3 5 14 5 (5)A> 1 24 58 4 5 14 52 (5)A> 25 59 5 5 14 53 (5)B> 26 61 3 5 14 53 <A(5) 4 27 62 2 5 14 52 <A(1) 5 4 28 64 0 5 14 <A(1) 12 5 4 29 66 2 5 13 5 (5)A> 12 5 4 30 68 4 5 13 53 (5)A> 5 4 31 70 2 5 13 53 <A(1) 1 4 32 73 -1 5 13 <A(1) 14 4 33 75 1 5 12 5 (5)A> 14 4 34 79 5 5 12 55 (5)A> 4 35 81 3 5 12 55 <A(1) 3 36 86 -2 5 12 <A(1) 15 3 37 88 0 5 1 5 (5)A> 15 3 38 93 5 5 1 56 (5)A> 3 39 94 6 5 1 57 (1)B> 40 102 4 5 1 57 <A(1) 1 41 109 -3 5 1 <A(1) 18 >> Try to prove a PA-CTR with 2 Vars... 0 0 0 [*]* 15+V(1) <A(1) 11+V(2) 1 2 2 [*]* 14+V(1) 5 (5)A> 11+V(2) 2 3+V(2) 3+V(2) [*]* 14+V(1) 52+V(2) (5)A> 3 4+V(2) 4+V(2) [*]* 14+V(1) 53+V(2) (5)B> 4 6+V(2) 2+V(2) [*]* 14+V(1) 53+V(2) <A(5) 4 5 7+V(2) 1+V(2) [*]* 14+V(1) 52+V(2) <A(1) 5 4 6 9+2*V(2) -1 [*]* 14+V(1) <A(1) 12+V(2) 5 4 7 11+2*V(2) 1 [*]* 13+V(1) 5 (5)A> 12+V(2) 5 4 8 13+3*V(2) 3+V(2) [*]* 13+V(1) 53+V(2) (5)A> 5 4 9 15+3*V(2) 1+V(2) [*]* 13+V(1) 53+V(2) <A(1) 1 4 10 18+4*V(2) -2 [*]* 13+V(1) <A(1) 14+V(2) 4 11 20+4*V(2) 0 [*]* 12+V(1) 5 (5)A> 14+V(2) 4 12 24+5*V(2) 4+V(2) [*]* 12+V(1) 55+V(2) (5)A> 4 13 26+5*V(2) 2+V(2) [*]* 12+V(1) 55+V(2) <A(1) 3 14 31+6*V(2) -3 [*]* 12+V(1) <A(1) 15+V(2) 3 15 33+6*V(2) -1 [*]* 11+V(1) 5 (5)A> 15+V(2) 3 16 38+7*V(2) 4+V(2) [*]* 11+V(1) 56+V(2) (5)A> 3 17 39+7*V(2) 5+V(2) [*]* 11+V(1) 57+V(2) (1)B> 18 47+7*V(2) 3+V(2) [*]* 11+V(1) 57+V(2) <A(1) 1 19 54+8*V(2) -4 [*]* 11+V(1) <A(1) 18+V(2) << Success! ==> defined new CTR 1 (PA) 42 111 -1 52 (5)A> 18 43 119 7 510 (5)A> 44 120 8 511 (5)B> 45 122 6 511 <A(5) 4 46 123 5 510 <A(1) 5 4 47 133 -5 <A(1) 110 5 4 48 135 -3 5 (1)B> 110 5 4 49 145 7 5 110 (1)B> 5 4 50 149 5 5 110 <A(1) 1 4 51 151 7 5 19 5 (5)A> 1 4 52 152 8 5 19 52 (5)A> 4 53 154 6 5 19 52 <A(1) 3 54 156 4 5 19 <A(1) 12 3 55 158 6 5 18 5 (5)A> 12 3 56 160 8 5 18 53 (5)A> 3 57 161 9 5 18 54 (1)B> 58 169 7 5 18 54 <A(1) 1 59 173 3 5 18 <A(1) 15 >> Try to prove a PPA-CTR with 2 Vars... 0 0 0 51+V(1) 1 <A(1) 15+V(2) 1 2 2 52+V(1) (5)A> 15+V(2) 2 7+V(2) 7+V(2) 57+V(1)+V(2) (5)A> 3 8+V(2) 8+V(2) 58+V(1)+V(2) (5)B> 4 10+V(2) 6+V(2) 58+V(1)+V(2) <A(5) 4 5 11+V(2) 5+V(2) 57+V(1)+V(2) <A(1) 5 4 6 18+V(1)+2*V(2) -2+-1*V(1) <A(1) 17+V(1)+V(2) 5 4 7 20+V(1)+2*V(2) 0+-1*V(1) 5 (1)B> 17+V(1)+V(2) 5 4 8 27+2*V(1)+3*V(2) 7+V(2) 5 17+V(1)+V(2) (1)B> 5 4 9 31+2*V(1)+3*V(2) 5+V(2) 5 17+V(1)+V(2) <A(1) 1 4 10 33+2*V(1)+3*V(2) 7+V(2) 5 16+V(1)+V(2) 5 (5)A> 1 4 11 34+2*V(1)+3*V(2) 8+V(2) 5 16+V(1)+V(2) 52 (5)A> 4 12 36+2*V(1)+3*V(2) 6+V(2) 5 16+V(1)+V(2) 52 <A(1) 3 13 38+2*V(1)+3*V(2) 4+V(2) 5 16+V(1)+V(2) <A(1) 12 3 14 40+2*V(1)+3*V(2) 6+V(2) 5 15+V(1)+V(2) 5 (5)A> 12 3 15 42+2*V(1)+3*V(2) 8+V(2) 5 15+V(1)+V(2) 53 (5)A> 3 16 43+2*V(1)+3*V(2) 9+V(2) 5 15+V(1)+V(2) 54 (1)B> 17 51+2*V(1)+3*V(2) 7+V(2) 5 15+V(1)+V(2) 54 <A(1) 1 18 55+2*V(1)+3*V(2) 3+V(2) 5 15+V(1)+V(2) <A(1) 15 << Success! ==> defined new CTR 2 (PPA) 59 173 3 5 18 <A(1) 15 == Executing PA-CTR 1, V(1)=3, V(2)=4, repcount=1, factor=7/4 78 259 -1 5 14 <A(1) 112 79 261 1 5 13 5 (5)A> 112 80 273 13 5 13 513 (5)A> 81 274 14 5 13 514 (5)B> 82 276 12 5 13 514 <A(5) 4 83 277 11 5 13 513 <A(1) 5 4 84 290 -2 5 13 <A(1) 113 5 4 85 292 0 5 12 5 (5)A> 113 5 4 86 305 13 5 12 514 (5)A> 5 4 87 307 11 5 12 514 <A(1) 1 4 88 321 -3 5 12 <A(1) 115 4 89 323 -1 5 1 5 (5)A> 115 4 90 338 14 5 1 516 (5)A> 4 91 340 12 5 1 516 <A(1) 3 92 356 -4 5 1 <A(1) 116 3 93 358 -2 52 (5)A> 116 3 94 374 14 518 (5)A> 3 95 375 15 519 (1)B> 96 383 13 519 <A(1) 1 97 402 -6 <A(1) 120 98 404 -4 5 (1)B> 120 99 424 16 5 120 (1)B> 100 432 14 5 120 <A(1) 1 >> Try to prove a PPA-CTR with 2 Vars... 0 0 0 51+V(1) 14 <A(1) 11+V(2) 1 2 2 51+V(1) 13 5 (5)A> 11+V(2) 2 3+V(2) 3+V(2) 51+V(1) 13 52+V(2) (5)A> 3 4+V(2) 4+V(2) 51+V(1) 13 53+V(2) (5)B> 4 6+V(2) 2+V(2) 51+V(1) 13 53+V(2) <A(5) 4 5 7+V(2) 1+V(2) 51+V(1) 13 52+V(2) <A(1) 5 4 6 9+2*V(2) -1 51+V(1) 13 <A(1) 12+V(2) 5 4 7 11+2*V(2) 1 51+V(1) 12 5 (5)A> 12+V(2) 5 4 8 13+3*V(2) 3+V(2) 51+V(1) 12 53+V(2) (5)A> 5 4 9 15+3*V(2) 1+V(2) 51+V(1) 12 53+V(2) <A(1) 1 4 10 18+4*V(2) -2 51+V(1) 12 <A(1) 14+V(2) 4 11 20+4*V(2) 0 51+V(1) 1 5 (5)A> 14+V(2) 4 12 24+5*V(2) 4+V(2) 51+V(1) 1 55+V(2) (5)A> 4 13 26+5*V(2) 2+V(2) 51+V(1) 1 55+V(2) <A(1) 3 14 31+6*V(2) -3 51+V(1) 1 <A(1) 15+V(2) 3 15 33+6*V(2) -1 52+V(1) (5)A> 15+V(2) 3 16 38+7*V(2) 4+V(2) 57+V(1)+V(2) (5)A> 3 17 39+7*V(2) 5+V(2) 58+V(1)+V(2) (1)B> 18 47+7*V(2) 3+V(2) 58+V(1)+V(2) <A(1) 1 19 55+V(1)+8*V(2) -5+-1*V(1) <A(1) 19+V(1)+V(2) 20 57+V(1)+8*V(2) -3+-1*V(1) 5 (1)B> 19+V(1)+V(2) 21 66+2*V(1)+9*V(2) 6+V(2) 5 19+V(1)+V(2) (1)B> 22 74+2*V(1)+9*V(2) 4+V(2) 5 19+V(1)+V(2) <A(1) 1 << Success! ==> defined new CTR 3 (PPA) 100 432 14 5 120 <A(1) 1 == Executing PA-CTR 1, V(1)=15, V(2)=0, repcount=4, factor=7/4 176 984 -2 5 14 <A(1) 129 == Executing PPA-CTR 3 (once), V(1)=0, V(2)=28 198 1310 30 5 137 <A(1) 1 == Executing PA-CTR 1, V(1)=32, V(2)=0, repcount=9, factor=7/4 369 3812 -6 5 1 <A(1) 164 == Executing PPA-CTR 2 (once), V(1)=0, V(2)=59 387 4044 56 5 164 <A(1) 15 == Executing PA-CTR 1, V(1)=59, V(2)=4, repcount=15, factor=7/4 672 11214 -4 5 14 <A(1) 1110 == Executing PPA-CTR 3 (once), V(1)=0, V(2)=109 694 12269 109 5 1118 <A(1) 1 == Executing PA-CTR 1, V(1)=113, V(2)=0, repcount=29, factor=7/4 1245 36571 -7 5 12 <A(1) 1204 1246 36573 -5 5 1 5 (5)A> 1204 1247 36777 199 5 1 5205 (5)A> 1248 36778 200 5 1 5206 (5)B> 1249 36780 198 5 1 5206 <A(5) 4 1250 36781 197 5 1 5205 <A(1) 5 4 1251 36986 -8 5 1 <A(1) 1205 5 4 1252 36988 -6 52 (5)A> 1205 5 4 1253 37193 199 5207 (5)A> 5 4 1254 37195 197 5207 <A(1) 1 4 1255 37402 -10 <A(1) 1208 4 1256 37404 -8 5 (1)B> 1208 4 1257 37612 200 5 1208 (1)B> 4 1258 37618 198 5 1208 <A(1) 1 >> Try to prove a PPA-CTR with 2 Vars... 0 0 0 51+V(1) 12 <A(1) 11+V(2) 1 2 2 51+V(1) 1 5 (5)A> 11+V(2) 2 3+V(2) 3+V(2) 51+V(1) 1 52+V(2) (5)A> 3 4+V(2) 4+V(2) 51+V(1) 1 53+V(2) (5)B> 4 6+V(2) 2+V(2) 51+V(1) 1 53+V(2) <A(5) 4 5 7+V(2) 1+V(2) 51+V(1) 1 52+V(2) <A(1) 5 4 6 9+2*V(2) -1 51+V(1) 1 <A(1) 12+V(2) 5 4 7 11+2*V(2) 1 52+V(1) (5)A> 12+V(2) 5 4 8 13+3*V(2) 3+V(2) 54+V(1)+V(2) (5)A> 5 4 9 15+3*V(2) 1+V(2) 54+V(1)+V(2) <A(1) 1 4 10 19+V(1)+4*V(2) -3+-1*V(1) <A(1) 15+V(1)+V(2) 4 11 21+V(1)+4*V(2) -1+-1*V(1) 5 (1)B> 15+V(1)+V(2) 4 12 26+2*V(1)+5*V(2) 4+V(2) 5 15+V(1)+V(2) (1)B> 4 13 32+2*V(1)+5*V(2) 2+V(2) 5 15+V(1)+V(2) <A(1) 1 << Success! ==> defined new CTR 4 (PPA) 1258 37618 198 5 1208 <A(1) 1 == Executing PA-CTR 1, V(1)=203, V(2)=0, repcount=51, factor=7/4 2227 111772 -6 5 14 <A(1) 1358 == Executing PPA-CTR 3 (once), V(1)=0, V(2)=357 2249 115059 355 5 1366 <A(1) 1 == Executing PA-CTR 1, V(1)=361, V(2)=0, repcount=91, factor=7/4 3978 349293 -9 5 12 <A(1) 1638 == Executing PPA-CTR 4 (once), V(1)=0, V(2)=637 3991 352510 630 5 1642 <A(1) 1 == Executing PA-CTR 1, V(1)=637, V(2)=0, repcount=160, factor=7/4 7031 1073470 -10 5 12 <A(1) 11121 == Executing PPA-CTR 4 (once), V(1)=0, V(2)=1120 7044 1079102 1112 5 11125 <A(1) 1 == Executing PA-CTR 1, V(1)=1120, V(2)=0, repcount=281, factor=7/4 12383 3297316 -12 5 1 <A(1) 11968 == Executing PPA-CTR 2 (once), V(1)=0, V(2)=1963 12401 3303260 1954 5 11968 <A(1) 15 == Executing PA-CTR 1, V(1)=1963, V(2)=4, repcount=491, factor=7/4 21730 10082006 -10 5 14 <A(1) 13442 == Executing PPA-CTR 3 (once), V(1)=0, V(2)=3441 21752 10113049 3435 5 13450 <A(1) 1 == Executing PA-CTR 1, V(1)=3445, V(2)=0, repcount=862, factor=7/4 38130 30940693 -13 5 12 <A(1) 16035 == Executing PPA-CTR 4 (once), V(1)=0, V(2)=6034 38143 30970895 6023 5 16039 <A(1) 1 == Executing PA-CTR 1, V(1)=6034, V(2)=0, repcount=1509, factor=7/4 66814 94768397 -13 5 13 <A(1) 110564 66815 94768399 -11 5 12 5 (5)A> 110564 66816 94778963 10553 5 12 510565 (5)A> 66817 94778964 10554 5 12 510566 (5)B> 66818 94778966 10552 5 12 510566 <A(5) 4 66819 94778967 10551 5 12 510565 <A(1) 5 4 66820 94789532 -14 5 12 <A(1) 110565 5 4 66821 94789534 -12 5 1 5 (5)A> 110565 5 4 66822 94800099 10553 5 1 510566 (5)A> 5 4 66823 94800101 10551 5 1 510566 <A(1) 1 4 66824 94810667 -15 5 1 <A(1) 110567 4 66825 94810669 -13 52 (5)A> 110567 4 66826 94821236 10554 510569 (5)A> 4 66827 94821238 10552 510569 <A(1) 3 66828 94831807 -17 <A(1) 110569 3 66829 94831809 -15 5 (1)B> 110569 3 66830 94842378 10554 5 110569 (1)B> 3 66831 94842379 10555 5 110570 (2)A> 66832 94842380 10556 5 110570 2 (5)B> 66833 94842382 10554 5 110570 2 <A(5) 4 66834 94842383 10555 5 110570 3 H> 5 4 [stop] Lines: 136 Top steps: 135 Macro steps: 66834 Basic steps: 94842383 Tape index: 10555 nonzeros: 10574 log10(nonzeros): 4.024 log10(steps ): 7.977 Run state: stop
Input to awk program: gohalt 1 nbs 6 T 2-state 6-symbol #a (T.J. & S. Ligocki) : 10574 94842383 5T 5RB 5RA 3RH 1RB 3LA 1LA 4LB 1RB 4LH 2RA 5LB 5LA C The halting transition on B2 is unused L 10 M 201 pref sim machv Lig26_a just simple machv Lig26_a-r with repetitions reduced machv Lig26_a-1 with tape symbol exponents machv Lig26_a-m as 1-bck-macro machine machv Lig26_a-a as 1-bck-macro machine with pure additive config-TRs iam Lig26_a-a mtype 1 0 mmtyp 3 r 1 H 1 mac 0 E 2 sympr HM 1 date Tue Jul 6 22:13:11 CEST 2010 edate Tue Jul 6 22:13:12 CEST 2010 bnspeed 1Start: Tue Jul 6 22:13:11 CEST 2010
Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;