Comment: This TM produces 10574 nonzeros in 94842383 steps. Comment: The halting transition on B2 is unused Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 5 |
on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||||
| A | 5RB | 5RA | 3RH | 1RB | 3LA | 1LA | 5 | right | B | 5 | right | A | 3 | right | H | 1 | right | B | 3 | left | A | 1 | left | A |
| B | 4LB | 1RB | 4LH | 2RA | 5LB | 5LA | 4 | left | B | 1 | right | B | 4 | left | H | 2 | right | A | 5 | left | B | 5 | left | A |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-bck-macro machine.
The same TM as 1-bck-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 5 B>
2 0 5 <B 4
3 -1 <A 5 4
4 0 5 B> 5 4
5 -1 5 <A 5 4
6 -2 <A 1 5 4
7 -1 5 B> 1 5 4
8 0 5 1 B> 5 4
9 -1 5 1 <A 5 4
10 0 5 5 A> 5 4
11 -1 5 5 <A 1 4
+ 13 -3 <A 13 4
14 -2 5 B> 13 4
+ 17 1 5 13 B> 4
18 0 5 13 <B 5
19 1 5 13 B> 5
20 0 5 13 <A 5
21 1 5 1 1 5 A> 5
22 0 5 1 1 5 <A 1
23 -1 5 1 1 <A 1 1
24 0 5 1 5 A> 1 1
+ 26 2 5 1 53 A>
27 3 5 1 54 B>
28 2 5 1 54 <B 4
29 1 5 1 53 <A 5 4
+ 32 -2 5 1 <A 13 5 4
33 -1 5 5 A> 13 5 4
+ 36 2 55 A> 5 4
37 1 55 <A 1 4
+ 42 -4 <A 16 4
43 -3 5 B> 16 4
+ 49 3 5 16 B> 4
50 2 5 16 <B 5
51 3 5 16 B> 5
52 2 5 16 <A 5
53 3 5 15 5 A> 5
54 2 5 15 5 <A 1
55 1 5 15 <A 1 1
56 2 5 14 5 A> 1 1
+ 58 4 5 14 53 A>
59 5 5 14 54 B>
60 4 5 14 54 <B 4
61 3 5 14 53 <A 5 4
+ 64 0 5 14 <A 13 5 4
65 1 5 13 5 A> 13 5 4
+ 68 4 5 13 54 A> 5 4
69 3 5 13 54 <A 1 4
+ 73 -1 5 13 <A 15 4
74 0 5 1 1 5 A> 15 4
+ 79 5 5 1 1 56 A> 4
80 4 5 1 1 56 <A 3
+ 86 -2 5 1 1 <A 16 3
87 -1 5 1 5 A> 16 3
+ 93 5 5 1 57 A> 3
94 6 5 1 57 1 B>
95 5 5 1 57 1 <B 4
96 6 5 1 57 1 B> 4
97 5 5 1 57 1 <B 5
98 6 5 1 57 1 B> 5
99 5 5 1 57 1 <A 5
100 6 5 1 58 A> 5
101 5 5 1 58 <A 1
+ 109 -3 5 1 <A 19
110 -2 5 5 A> 19
+ 119 7 511 A>
120 8 512 B>
121 7 512 <B 4
122 6 511 <A 5 4
+ 133 -5 <A 111 5 4
134 -4 5 B> 111 5 4
+ 145 7 5 111 B> 5 4
146 6 5 111 <A 5 4
147 7 5 110 5 A> 5 4
148 6 5 110 5 <A 1 4
149 5 5 110 <A 1 1 4
150 6 5 19 5 A> 1 1 4
+ 152 8 5 19 53 A> 4
153 7 5 19 53 <A 3
+ 156 4 5 19 <A 13 3
157 5 5 18 5 A> 13 3
+ 160 8 5 18 54 A> 3
161 9 5 18 54 1 B>
162 8 5 18 54 1 <B 4
163 9 5 18 54 1 B> 4
164 8 5 18 54 1 <B 5
165 9 5 18 54 1 B> 5
166 8 5 18 54 1 <A 5
167 9 5 18 55 A> 5
168 8 5 18 55 <A 1
+ 173 3 5 18 <A 16
174 4 5 17 5 A> 16
+ 180 10 5 17 57 A>
181 11 5 17 58 B>
182 10 5 17 58 <B 4
183 9 5 17 57 <A 5 4
+ 190 2 5 17 <A 17 5 4
191 3 5 16 5 A> 17 5 4
+ 198 10 5 16 58 A> 5 4
199 9 5 16 58 <A 1 4
+ 207 1 5 16 <A 19 4
208 2 5 15 5 A> 19 4
+ 217 11 5 15 510 A> 4
218 10 5 15 510 <A 3
+ 228 0 5 15 <A 110 3
229 1 5 14 5 A> 110 3
+ 239 11 5 14 511 A> 3
240 12 5 14 511 1 B>
241 11 5 14 511 1 <B 4
242 12 5 14 511 1 B> 4
243 11 5 14 511 1 <B 5
244 12 5 14 511 1 B> 5
245 11 5 14 511 1 <A 5
246 12 5 14 512 A> 5
247 11 5 14 512 <A 1
+ 259 -1 5 14 <A 113
260 0 5 13 5 A> 113
+ 273 13 5 13 514 A>
274 14 5 13 515 B>
275 13 5 13 515 <B 4
276 12 5 13 514 <A 5 4
+ 290 -2 5 13 <A 114 5 4
291 -1 5 1 1 5 A> 114 5 4
+ 305 13 5 1 1 515 A> 5 4
306 12 5 1 1 515 <A 1 4
+ 321 -3 5 1 1 <A 116 4
322 -2 5 1 5 A> 116 4
+ 338 14 5 1 517 A> 4
339 13 5 1 517 <A 3
+ 356 -4 5 1 <A 117 3
357 -3 5 5 A> 117 3
+ 374 14 519 A> 3
375 15 519 1 B>
376 14 519 1 <B 4
377 15 519 1 B> 4
378 14 519 1 <B 5
379 15 519 1 B> 5
380 14 519 1 <A 5
381 15 520 A> 5
382 14 520 <A 1
+ 402 -6 <A 121
403 -5 5 B> 121
+ 424 16 5 121 B>
425 15 5 121 <B 4
426 16 5 121 B> 4
427 15 5 121 <B 5
428 16 5 121 B> 5
429 15 5 121 <A 5
430 16 5 120 5 A> 5
431 15 5 120 5 <A 1
432 14 5 120 <A 1 1
433 15 5 119 5 A> 1 1
+ 435 17 5 119 53 A>
436 18 5 119 54 B>
437 17 5 119 54 <B 4
438 16 5 119 53 <A 5 4
+ 441 13 5 119 <A 13 5 4
442 14 5 118 5 A> 13 5 4
+ 445 17 5 118 54 A> 5 4
446 16 5 118 54 <A 1 4
+ 450 12 5 118 <A 15 4
451 13 5 117 5 A> 15 4
+ 456 18 5 117 56 A> 4
457 17 5 117 56 <A 3
+ 463 11 5 117 <A 16 3
464 12 5 116 5 A> 16 3
+ 470 18 5 116 57 A> 3
471 19 5 116 57 1 B>
472 18 5 116 57 1 <B 4
473 19 5 116 57 1 B> 4
474 18 5 116 57 1 <B 5
475 19 5 116 57 1 B> 5
476 18 5 116 57 1 <A 5
477 19 5 116 58 A> 5
478 18 5 116 58 <A 1
+ 486 10 5 116 <A 19
487 11 5 115 5 A> 19
+ 496 20 5 115 510 A>
497 21 5 115 511 B>
498 20 5 115 511 <B 4
499 19 5 115 510 <A 5 4
+ 509 9 5 115 <A 110 5 4
510 10 5 114 5 A> 110 5 4
+ 520 20 5 114 511 A> 5 4
521 19 5 114 511 <A 1 4
+ 532 8 5 114 <A 112 4
533 9 5 113 5 A> 112 4
+ 545 21 5 113 513 A> 4
546 20 5 113 513 <A 3
+ 559 7 5 113 <A 113 3
560 8 5 112 5 A> 113 3
+ 573 21 5 112 514 A> 3
574 22 5 112 514 1 B>
575 21 5 112 514 1 <B 4
576 22 5 112 514 1 B> 4
577 21 5 112 514 1 <B 5
578 22 5 112 514 1 B> 5
579 21 5 112 514 1 <A 5
580 22 5 112 515 A> 5
581 21 5 112 515 <A 1
+ 596 6 5 112 <A 116
After 596 steps (201 lines): state = A.
Produced 29 nonzeros.
Tape index 6, scanned [-6 .. 22].
| State | Count | Execution count | First in step | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||
| A | 494 | 14 | 223 | 6 | 6 | 245 | 0 | 9 | 93 | 79 | 5 | ||
| B | 102 | 15 | 58 | 9 | 20 | 1 | 7 | 17 | 2 | ||||