Comment: This TM produces 10574 nonzeros in 94842383 steps. Comment: The halting transition on B2 is unused Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 5 |
on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||||
A | 5RB | 5RA | 3RH | 1RB | 3LA | 1LA | 5 | right | B | 5 | right | A | 3 | right | H | 1 | right | B | 3 | left | A | 1 | left | A |
B | 4LB | 1RB | 4LH | 2RA | 5LB | 5LA | 4 | left | B | 1 | right | B | 4 | left | H | 2 | right | A | 5 | left | B | 5 | left | A |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-bck-macro machine. The same TM as 1-bck-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 5 B> 2 0 5 <B 4 3 -1 <A 5 4 4 0 5 B> 5 4 5 -1 5 <A 5 4 6 -2 <A 1 5 4 7 -1 5 B> 1 5 4 8 0 5 1 B> 5 4 9 -1 5 1 <A 5 4 10 0 5 5 A> 5 4 11 -1 5 5 <A 1 4 + 13 -3 <A 13 4 14 -2 5 B> 13 4 + 17 1 5 13 B> 4 18 0 5 13 <B 5 19 1 5 13 B> 5 20 0 5 13 <A 5 21 1 5 1 1 5 A> 5 22 0 5 1 1 5 <A 1 23 -1 5 1 1 <A 1 1 24 0 5 1 5 A> 1 1 + 26 2 5 1 53 A> 27 3 5 1 54 B> 28 2 5 1 54 <B 4 29 1 5 1 53 <A 5 4 + 32 -2 5 1 <A 13 5 4 33 -1 5 5 A> 13 5 4 + 36 2 55 A> 5 4 37 1 55 <A 1 4 + 42 -4 <A 16 4 43 -3 5 B> 16 4 + 49 3 5 16 B> 4 50 2 5 16 <B 5 51 3 5 16 B> 5 52 2 5 16 <A 5 53 3 5 15 5 A> 5 54 2 5 15 5 <A 1 55 1 5 15 <A 1 1 56 2 5 14 5 A> 1 1 + 58 4 5 14 53 A> 59 5 5 14 54 B> 60 4 5 14 54 <B 4 61 3 5 14 53 <A 5 4 + 64 0 5 14 <A 13 5 4 65 1 5 13 5 A> 13 5 4 + 68 4 5 13 54 A> 5 4 69 3 5 13 54 <A 1 4 + 73 -1 5 13 <A 15 4 74 0 5 1 1 5 A> 15 4 + 79 5 5 1 1 56 A> 4 80 4 5 1 1 56 <A 3 + 86 -2 5 1 1 <A 16 3 87 -1 5 1 5 A> 16 3 + 93 5 5 1 57 A> 3 94 6 5 1 57 1 B> 95 5 5 1 57 1 <B 4 96 6 5 1 57 1 B> 4 97 5 5 1 57 1 <B 5 98 6 5 1 57 1 B> 5 99 5 5 1 57 1 <A 5 100 6 5 1 58 A> 5 101 5 5 1 58 <A 1 + 109 -3 5 1 <A 19 110 -2 5 5 A> 19 + 119 7 511 A> 120 8 512 B> 121 7 512 <B 4 122 6 511 <A 5 4 + 133 -5 <A 111 5 4 134 -4 5 B> 111 5 4 + 145 7 5 111 B> 5 4 146 6 5 111 <A 5 4 147 7 5 110 5 A> 5 4 148 6 5 110 5 <A 1 4 149 5 5 110 <A 1 1 4 150 6 5 19 5 A> 1 1 4 + 152 8 5 19 53 A> 4 153 7 5 19 53 <A 3 + 156 4 5 19 <A 13 3 157 5 5 18 5 A> 13 3 + 160 8 5 18 54 A> 3 161 9 5 18 54 1 B> 162 8 5 18 54 1 <B 4 163 9 5 18 54 1 B> 4 164 8 5 18 54 1 <B 5 165 9 5 18 54 1 B> 5 166 8 5 18 54 1 <A 5 167 9 5 18 55 A> 5 168 8 5 18 55 <A 1 + 173 3 5 18 <A 16 174 4 5 17 5 A> 16 + 180 10 5 17 57 A> 181 11 5 17 58 B> 182 10 5 17 58 <B 4 183 9 5 17 57 <A 5 4 + 190 2 5 17 <A 17 5 4 191 3 5 16 5 A> 17 5 4 + 198 10 5 16 58 A> 5 4 199 9 5 16 58 <A 1 4 + 207 1 5 16 <A 19 4 208 2 5 15 5 A> 19 4 + 217 11 5 15 510 A> 4 218 10 5 15 510 <A 3 + 228 0 5 15 <A 110 3 229 1 5 14 5 A> 110 3 + 239 11 5 14 511 A> 3 240 12 5 14 511 1 B> 241 11 5 14 511 1 <B 4 242 12 5 14 511 1 B> 4 243 11 5 14 511 1 <B 5 244 12 5 14 511 1 B> 5 245 11 5 14 511 1 <A 5 246 12 5 14 512 A> 5 247 11 5 14 512 <A 1 + 259 -1 5 14 <A 113 260 0 5 13 5 A> 113 + 273 13 5 13 514 A> 274 14 5 13 515 B> 275 13 5 13 515 <B 4 276 12 5 13 514 <A 5 4 + 290 -2 5 13 <A 114 5 4 291 -1 5 1 1 5 A> 114 5 4 + 305 13 5 1 1 515 A> 5 4 306 12 5 1 1 515 <A 1 4 + 321 -3 5 1 1 <A 116 4 322 -2 5 1 5 A> 116 4 + 338 14 5 1 517 A> 4 339 13 5 1 517 <A 3 + 356 -4 5 1 <A 117 3 357 -3 5 5 A> 117 3 + 374 14 519 A> 3 375 15 519 1 B> 376 14 519 1 <B 4 377 15 519 1 B> 4 378 14 519 1 <B 5 379 15 519 1 B> 5 380 14 519 1 <A 5 381 15 520 A> 5 382 14 520 <A 1 + 402 -6 <A 121 403 -5 5 B> 121 + 424 16 5 121 B> 425 15 5 121 <B 4 426 16 5 121 B> 4 427 15 5 121 <B 5 428 16 5 121 B> 5 429 15 5 121 <A 5 430 16 5 120 5 A> 5 431 15 5 120 5 <A 1 432 14 5 120 <A 1 1 433 15 5 119 5 A> 1 1 + 435 17 5 119 53 A> 436 18 5 119 54 B> 437 17 5 119 54 <B 4 438 16 5 119 53 <A 5 4 + 441 13 5 119 <A 13 5 4 442 14 5 118 5 A> 13 5 4 + 445 17 5 118 54 A> 5 4 446 16 5 118 54 <A 1 4 + 450 12 5 118 <A 15 4 451 13 5 117 5 A> 15 4 + 456 18 5 117 56 A> 4 457 17 5 117 56 <A 3 + 463 11 5 117 <A 16 3 464 12 5 116 5 A> 16 3 + 470 18 5 116 57 A> 3 471 19 5 116 57 1 B> 472 18 5 116 57 1 <B 4 473 19 5 116 57 1 B> 4 474 18 5 116 57 1 <B 5 475 19 5 116 57 1 B> 5 476 18 5 116 57 1 <A 5 477 19 5 116 58 A> 5 478 18 5 116 58 <A 1 + 486 10 5 116 <A 19 487 11 5 115 5 A> 19 + 496 20 5 115 510 A> 497 21 5 115 511 B> 498 20 5 115 511 <B 4 499 19 5 115 510 <A 5 4 + 509 9 5 115 <A 110 5 4 510 10 5 114 5 A> 110 5 4 + 520 20 5 114 511 A> 5 4 521 19 5 114 511 <A 1 4 + 532 8 5 114 <A 112 4 533 9 5 113 5 A> 112 4 + 545 21 5 113 513 A> 4 546 20 5 113 513 <A 3 + 559 7 5 113 <A 113 3 560 8 5 112 5 A> 113 3 + 573 21 5 112 514 A> 3 574 22 5 112 514 1 B> 575 21 5 112 514 1 <B 4 576 22 5 112 514 1 B> 4 577 21 5 112 514 1 <B 5 578 22 5 112 514 1 B> 5 579 21 5 112 514 1 <A 5 580 22 5 112 515 A> 5 581 21 5 112 515 <A 1 + 596 6 5 112 <A 116 After 596 steps (201 lines): state = A. Produced 29 nonzeros. Tape index 6, scanned [-6 .. 22].
State | Count | Execution count | First in step | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | on 0 | on 1 | on 2 | on 3 | on 4 | on 5 | ||
A | 494 | 14 | 223 | 6 | 6 | 245 | 0 | 9 | 93 | 79 | 5 | ||
B | 102 | 15 | 58 | 9 | 20 | 1 | 7 | 17 | 2 |