Comment: This TM produces >5.2x10^105 nonzeros in >1.6x10^211 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | 1RB | 2LA | 4RA | 2LB | 2LA | 1 | right | B | 2 | left | A | 4 | right | A | 2 | left | B | 2 | left | A |
B | 0LA | 2RB | 3RB | 1RA | 1RH | 0 | left | A | 2 | right | B | 3 | right | B | 1 | right | A | 1 | right | H |
Simulation is done just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. The same TM as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Step Tpos St Tape contents 0 0 A . . 0 1 1 B . . 10 2 0 A . . 10 3 -1 A . .020 4 0 B . .120 5 1 B . .130 6 0 A . .130 7 -1 B . .120 8 0 B . .220 9 1 B . .230 10 0 A . .230 11 -1 B . .220 12 0 B . .320 13 1 B . .330 14 0 A . .330 15 -1 B . .320 16 0 A . .120 17 1 A . .140 18 2 B . .1410 19 1 A . .1410 20 0 A . .1420 21 -1 A . .1220 22 -2 A . 02220 23 -1 B . 12220 24 0 B . 13220 25 1 B . 13320 26 2 B . 13330 27 1 A . 13330 28 0 B . 13320 29 1 A . 13120 30 2 A . 13140 31 3 B . 131410 32 2 A . 131410 33 1 A . 131420 34 0 A . 131220 35 -1 A . 132220 36 -2 B . 122220 37 -1 B . 222220 38 0 B . 232220 39 1 B . 233220 40 2 B . 233320 41 3 B . 233330 42 2 A . 233330 43 1 B . 233320 44 2 A . 233120 45 3 A . 233140 46 4 B . 2331410 47 3 A . 2331410 48 2 A . 2331420 49 1 A . 2331220 50 0 A . 2332220 51 -1 B . 2322220 52 0 A . 2122220 53 1 A . 2142220 54 2 A . 2144220 55 3 A . 2144420 56 4 A . 2144440 57 5 B . 21444410 58 4 A . 21444410 59 3 A . 21444420 60 2 A . 21444220 61 1 A . 21442220 62 0 A . 21422220 63 -1 A . 21222220 64 -2 A . 22222220 65 -1 A . 42222220 66 0 A . 44222220 67 1 A . 44422220 68 2 A . 44442220 69 3 A . 44444220 70 4 A . 44444420 71 5 A . 44444440 72 6 B . 444444410 73 5 A . 444444410 74 4 A . 444444420 75 3 A . 444444220 76 2 A . 444442220 77 1 A . 444422220 78 0 A . 444222220 79 -1 A . 442222220 80 -2 A . 422222220 81 -3 A .0222222220 82 -2 B .1222222220 83 -1 B .1322222220 84 0 B .1332222220 85 1 B .1333222220 86 2 B .1333322220 87 3 B .1333332220 88 4 B .1333333220 89 5 B .1333333320 90 6 B .1333333330 91 5 A .1333333330 92 4 B .1333333320 93 5 A .1333333120 94 6 A .1333333140 95 7 B .13333331410 96 6 A .13333331410 97 5 A .13333331420 98 4 A .13333331220 99 3 A .13333332220 100 2 B .13333322220 101 3 A .13333122220 102 4 A .13333142220 103 5 A .13333144220 104 6 A .13333144420 105 7 A .13333144440 106 8 B .133331444410 107 7 A .133331444410 108 6 A .133331444420 109 5 A .133331444220 110 4 A .133331442220 111 3 A .133331422220 112 2 A .133331222220 113 1 A .133332222220 114 0 B .133322222220 115 1 A .133122222220 116 2 A .133142222220 117 3 A .133144222220 118 4 A .133144422220 119 5 A .133144442220 120 6 A .133144444220 121 7 A .133144444420 122 8 A .133144444440 123 9 B .1331444444410 124 8 A .1331444444410 125 7 A .1331444444420 126 6 A .1331444444220 127 5 A .1331444442220 128 4 A .1331444422220 129 3 A .1331444222220 130 2 A .1331442222220 131 1 A .1331422222220 132 0 A .1331222222220 133 -1 A .1332222222220 134 -2 B .1322222222220 135 -1 A .1122222222220 136 0 A .1142222222220 137 1 A .1144222222220 138 2 A .1144422222220 139 3 A .1144442222220 140 4 A .1144444222220 141 5 A .1144444422220 142 6 A .1144444442220 143 7 A .1144444444220 144 8 A .1144444444420 145 9 A .1144444444440 146 10 B .11444444444410 147 9 A .11444444444410 148 8 A .11444444444420 149 7 A .11444444444220 150 6 A .11444444442220 151 5 A .11444444422220 152 4 A .11444444222220 153 3 A .11444442222220 154 2 A .11444422222220 155 1 A .11444222222220 156 0 A .11442222222220 157 -1 A .11422222222220 158 -2 A .11222222222220 159 -3 A .12222222222220 160 -4 A 022222222222220 161 -3 B 122222222222220 162 -2 B 132222222222220 163 -1 B 133222222222220 164 0 B 133322222222220 165 1 B 133332222222220 166 2 B 133333222222220 167 3 B 133333322222220 168 4 B 133333332222220 169 5 B 133333333222220 170 6 B 133333333322220 171 7 B 133333333332220 172 8 B 133333333333220 173 9 B 133333333333320 174 10 B 133333333333330 175 9 A 133333333333330 176 8 B 133333333333320 177 9 A 133333333333120 178 10 A 133333333333140 179 11 B 1333333333331410 180 10 A 1333333333331410 181 9 A 1333333333331420 182 8 A 1333333333331220 183 7 A 1333333333332220 184 6 B 1333333333322220 185 7 A 1333333333122220 186 8 A 1333333333142220 187 9 A 1333333333144220 188 10 A 1333333333144420 189 11 A 1333333333144440 190 12 B 13333333331444410 191 11 A 13333333331444410 192 10 A 13333333331444420 193 9 A 13333333331444220 194 8 A 13333333331442220 195 7 A 13333333331422220 196 6 A 13333333331222220 197 5 A 13333333332222220 198 4 B 13333333322222220 199 5 A 13333333122222220 200 6 A 13333333142222220 After 200 steps (201 lines): state = A. Produced 16 nonzeros. Tape index 6, scanned [-4 .. 12].
State | Count | Execution count | First in step | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
A | 136 | 16 | 23 | 42 | 14 | 41 | 0 | 2 | 16 | 6 | 20 |
B | 64 | 19 | 2 | 32 | 11 | 1 | 7 | 4 | 15 |