2-state 5-symbol #m from T.J. & S. Ligocki

Comment: This TM produces >5.2x10^105 nonzeros in >1.6x10^211 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 2LA 4RA 2LB 2LA 1 right B 2 left A 4 right A 2 left B 2 left A
B 0LA 2RB 3RB 1RA 1RH 0 left A 2 right B 3 right B 1 right A 1 right H
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . 0
     1    1 B . . 10
     2    0 A . . 10
     3   -1 A . .020
     4    0 B . .120
     5    1 B . .130
     6    0 A . .130
     7   -1 B . .120
     8    0 B . .220
     9    1 B . .230
    10    0 A . .230
    11   -1 B . .220
    12    0 B . .320
    13    1 B . .330
    14    0 A . .330
    15   -1 B . .320
    16    0 A . .120
    17    1 A . .140
    18    2 B . .1410
    19    1 A . .1410
    20    0 A . .1420
    21   -1 A . .1220
    22   -2 A . 02220
    23   -1 B . 12220
    24    0 B . 13220
    25    1 B . 13320
    26    2 B . 13330
    27    1 A . 13330
    28    0 B . 13320
    29    1 A . 13120
    30    2 A . 13140
    31    3 B . 131410
    32    2 A . 131410
    33    1 A . 131420
    34    0 A . 131220
    35   -1 A . 132220
    36   -2 B . 122220
    37   -1 B . 222220
    38    0 B . 232220
    39    1 B . 233220
    40    2 B . 233320
    41    3 B . 233330
    42    2 A . 233330
    43    1 B . 233320
    44    2 A . 233120
    45    3 A . 233140
    46    4 B . 2331410
    47    3 A . 2331410
    48    2 A . 2331420
    49    1 A . 2331220
    50    0 A . 2332220
    51   -1 B . 2322220
    52    0 A . 2122220
    53    1 A . 2142220
    54    2 A . 2144220
    55    3 A . 2144420
    56    4 A . 2144440
    57    5 B . 21444410
    58    4 A . 21444410
    59    3 A . 21444420
    60    2 A . 21444220
    61    1 A . 21442220
    62    0 A . 21422220
    63   -1 A . 21222220
    64   -2 A . 22222220
    65   -1 A . 42222220
    66    0 A . 44222220
    67    1 A . 44422220
    68    2 A . 44442220
    69    3 A . 44444220
    70    4 A . 44444420
    71    5 A . 44444440
    72    6 B . 444444410
    73    5 A . 444444410
    74    4 A . 444444420
    75    3 A . 444444220
    76    2 A . 444442220
    77    1 A . 444422220
    78    0 A . 444222220
    79   -1 A . 442222220
    80   -2 A . 422222220
    81   -3 A .0222222220
    82   -2 B .1222222220
    83   -1 B .1322222220
    84    0 B .1332222220
    85    1 B .1333222220
    86    2 B .1333322220
    87    3 B .1333332220
    88    4 B .1333333220
    89    5 B .1333333320
    90    6 B .1333333330
    91    5 A .1333333330
    92    4 B .1333333320
    93    5 A .1333333120
    94    6 A .1333333140
    95    7 B .13333331410
    96    6 A .13333331410
    97    5 A .13333331420
    98    4 A .13333331220
    99    3 A .13333332220
   100    2 B .13333322220
   101    3 A .13333122220
   102    4 A .13333142220
   103    5 A .13333144220
   104    6 A .13333144420
   105    7 A .13333144440
   106    8 B .133331444410
   107    7 A .133331444410
   108    6 A .133331444420
   109    5 A .133331444220
   110    4 A .133331442220
   111    3 A .133331422220
   112    2 A .133331222220
   113    1 A .133332222220
   114    0 B .133322222220
   115    1 A .133122222220
   116    2 A .133142222220
   117    3 A .133144222220
   118    4 A .133144422220
   119    5 A .133144442220
   120    6 A .133144444220
   121    7 A .133144444420
   122    8 A .133144444440
   123    9 B .1331444444410
   124    8 A .1331444444410
   125    7 A .1331444444420
   126    6 A .1331444444220
   127    5 A .1331444442220
   128    4 A .1331444422220
   129    3 A .1331444222220
   130    2 A .1331442222220
   131    1 A .1331422222220
   132    0 A .1331222222220
   133   -1 A .1332222222220
   134   -2 B .1322222222220
   135   -1 A .1122222222220
   136    0 A .1142222222220
   137    1 A .1144222222220
   138    2 A .1144422222220
   139    3 A .1144442222220
   140    4 A .1144444222220
   141    5 A .1144444422220
   142    6 A .1144444442220
   143    7 A .1144444444220
   144    8 A .1144444444420
   145    9 A .1144444444440
   146   10 B .11444444444410
   147    9 A .11444444444410
   148    8 A .11444444444420
   149    7 A .11444444444220
   150    6 A .11444444442220
   151    5 A .11444444422220
   152    4 A .11444444222220
   153    3 A .11444442222220
   154    2 A .11444422222220
   155    1 A .11444222222220
   156    0 A .11442222222220
   157   -1 A .11422222222220
   158   -2 A .11222222222220
   159   -3 A .12222222222220
   160   -4 A 022222222222220
   161   -3 B 122222222222220
   162   -2 B 132222222222220
   163   -1 B 133222222222220
   164    0 B 133322222222220
   165    1 B 133332222222220
   166    2 B 133333222222220
   167    3 B 133333322222220
   168    4 B 133333332222220
   169    5 B 133333333222220
   170    6 B 133333333322220
   171    7 B 133333333332220
   172    8 B 133333333333220
   173    9 B 133333333333320
   174   10 B 133333333333330
   175    9 A 133333333333330
   176    8 B 133333333333320
   177    9 A 133333333333120
   178   10 A 133333333333140
   179   11 B 1333333333331410
   180   10 A 1333333333331410
   181    9 A 1333333333331420
   182    8 A 1333333333331220
   183    7 A 1333333333332220
   184    6 B 1333333333322220
   185    7 A 1333333333122220
   186    8 A 1333333333142220
   187    9 A 1333333333144220
   188   10 A 1333333333144420
   189   11 A 1333333333144440
   190   12 B 13333333331444410
   191   11 A 13333333331444410
   192   10 A 13333333331444420
   193    9 A 13333333331444220
   194    8 A 13333333331442220
   195    7 A 13333333331422220
   196    6 A 13333333331222220
   197    5 A 13333333332222220
   198    4 B 13333333322222220
   199    5 A 13333333122222220
   200    6 A 13333333142222220

After 200 steps (201 lines): state = A.
Produced     16 nonzeros.
Tape index 6, scanned [-4 .. 12].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 136 16 23 42 14 41 0 2 16 6 20
B 64 19 2 32 11   1 7 4 15  
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:13:03 CEST 2010