Comment: This TM produces >5.2x10^105 nonzeros in >1.6x10^211 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | 1RB | 2LA | 4RA | 2LB | 2LA | 1 | right | B | 2 | left | A | 4 | right | A | 2 | left | B | 2 | left | A |
| B | 0LA | 2RB | 3RB | 1RA | 1RH | 0 | left | A | 2 | right | B | 3 | right | B | 1 | right | A | 1 | right | H |
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.
Step Tpos St Tape contents
0 0 A . . 0
1 1 B . . 10
2 0 A . . 10
3 -1 A . .020
4 0 B . .120
5 1 B . .130
6 0 A . .130
7 -1 B . .120
8 0 B . .220
9 1 B . .230
10 0 A . .230
11 -1 B . .220
12 0 B . .320
13 1 B . .330
14 0 A . .330
15 -1 B . .320
16 0 A . .120
17 1 A . .140
18 2 B . .1410
19 1 A . .1410
20 0 A . .1420
21 -1 A . .1220
22 -2 A . 02220
23 -1 B . 12220
24 0 B . 13220
25 1 B . 13320
26 2 B . 13330
27 1 A . 13330
28 0 B . 13320
29 1 A . 13120
30 2 A . 13140
31 3 B . 131410
32 2 A . 131410
33 1 A . 131420
34 0 A . 131220
35 -1 A . 132220
36 -2 B . 122220
37 -1 B . 222220
38 0 B . 232220
39 1 B . 233220
40 2 B . 233320
41 3 B . 233330
42 2 A . 233330
43 1 B . 233320
44 2 A . 233120
45 3 A . 233140
46 4 B . 2331410
47 3 A . 2331410
48 2 A . 2331420
49 1 A . 2331220
50 0 A . 2332220
51 -1 B . 2322220
52 0 A . 2122220
53 1 A . 2142220
54 2 A . 2144220
55 3 A . 2144420
56 4 A . 2144440
57 5 B . 21444410
58 4 A . 21444410
59 3 A . 21444420
60 2 A . 21444220
61 1 A . 21442220
62 0 A . 21422220
63 -1 A . 21222220
64 -2 A . 22222220
65 -1 A . 42222220
66 0 A . 44222220
67 1 A . 44422220
68 2 A . 44442220
69 3 A . 44444220
70 4 A . 44444420
71 5 A . 44444440
72 6 B . 444444410
73 5 A . 444444410
74 4 A . 444444420
75 3 A . 444444220
76 2 A . 444442220
77 1 A . 444422220
78 0 A . 444222220
79 -1 A . 442222220
80 -2 A . 422222220
81 -3 A .0222222220
82 -2 B .1222222220
83 -1 B .1322222220
84 0 B .1332222220
85 1 B .1333222220
86 2 B .1333322220
87 3 B .1333332220
88 4 B .1333333220
89 5 B .1333333320
90 6 B .1333333330
91 5 A .1333333330
92 4 B .1333333320
93 5 A .1333333120
94 6 A .1333333140
95 7 B .13333331410
96 6 A .13333331410
97 5 A .13333331420
98 4 A .13333331220
99 3 A .13333332220
100 2 B .13333322220
101 3 A .13333122220
102 4 A .13333142220
103 5 A .13333144220
104 6 A .13333144420
105 7 A .13333144440
106 8 B .133331444410
107 7 A .133331444410
108 6 A .133331444420
109 5 A .133331444220
110 4 A .133331442220
111 3 A .133331422220
112 2 A .133331222220
113 1 A .133332222220
114 0 B .133322222220
115 1 A .133122222220
116 2 A .133142222220
117 3 A .133144222220
118 4 A .133144422220
119 5 A .133144442220
120 6 A .133144444220
121 7 A .133144444420
122 8 A .133144444440
123 9 B .1331444444410
124 8 A .1331444444410
125 7 A .1331444444420
126 6 A .1331444444220
127 5 A .1331444442220
128 4 A .1331444422220
129 3 A .1331444222220
130 2 A .1331442222220
131 1 A .1331422222220
132 0 A .1331222222220
133 -1 A .1332222222220
134 -2 B .1322222222220
135 -1 A .1122222222220
136 0 A .1142222222220
137 1 A .1144222222220
138 2 A .1144422222220
139 3 A .1144442222220
140 4 A .1144444222220
141 5 A .1144444422220
142 6 A .1144444442220
143 7 A .1144444444220
144 8 A .1144444444420
145 9 A .1144444444440
146 10 B .11444444444410
147 9 A .11444444444410
148 8 A .11444444444420
149 7 A .11444444444220
150 6 A .11444444442220
151 5 A .11444444422220
152 4 A .11444444222220
153 3 A .11444442222220
154 2 A .11444422222220
155 1 A .11444222222220
156 0 A .11442222222220
157 -1 A .11422222222220
158 -2 A .11222222222220
159 -3 A .12222222222220
160 -4 A 022222222222220
161 -3 B 122222222222220
162 -2 B 132222222222220
163 -1 B 133222222222220
164 0 B 133322222222220
165 1 B 133332222222220
166 2 B 133333222222220
167 3 B 133333322222220
168 4 B 133333332222220
169 5 B 133333333222220
170 6 B 133333333322220
171 7 B 133333333332220
172 8 B 133333333333220
173 9 B 133333333333320
174 10 B 133333333333330
175 9 A 133333333333330
176 8 B 133333333333320
177 9 A 133333333333120
178 10 A 133333333333140
179 11 B 1333333333331410
180 10 A 1333333333331410
181 9 A 1333333333331420
182 8 A 1333333333331220
183 7 A 1333333333332220
184 6 B 1333333333322220
185 7 A 1333333333122220
186 8 A 1333333333142220
187 9 A 1333333333144220
188 10 A 1333333333144420
189 11 A 1333333333144440
190 12 B 13333333331444410
191 11 A 13333333331444410
192 10 A 13333333331444420
193 9 A 13333333331444220
194 8 A 13333333331442220
195 7 A 13333333331422220
196 6 A 13333333331222220
197 5 A 13333333332222220
198 4 B 13333333322222220
199 5 A 13333333122222220
200 6 A 13333333142222220
After 200 steps (201 lines): state = A.
Produced 16 nonzeros.
Tape index 6, scanned [-4 .. 12].
| State | Count | Execution count | First in step | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
| A | 136 | 16 | 23 | 42 | 14 | 41 | 0 | 2 | 16 | 6 | 20 |
| B | 64 | 19 | 2 | 32 | 11 | 1 | 7 | 4 | 15 | ||