Comment: This TM produces >5.2x10^105 nonzeros in >1.6x10^211 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | 1RB | 2LA | 4RA | 2LB | 2LA | 1 | right | B | 2 | left | A | 4 | right | A | 2 | left | B | 2 | left | A |
| B | 0LA | 2RB | 3RB | 1RA | 1RH | 0 | left | A | 2 | right | B | 3 | right | B | 1 | right | A | 1 | right | H |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <A
3 -1 <A 2
4 0 1 B> 2
5 1 1 3 B>
6 0 1 3 <A
7 -1 1 <B 2
8 0 2 B> 2
9 1 2 3 B>
10 0 2 3 <A
11 -1 2 <B 2
12 0 3 B> 2
13 1 3 3 B>
14 0 3 3 <A
15 -1 3 <B 2
16 0 1 A> 2
17 1 1 4 A>
18 2 1 4 1 B>
19 1 1 4 1 <A
20 0 1 4 <A 2
21 -1 1 <A 2 2
22 -2 <A 23
23 -1 1 B> 23
+ 26 2 1 33 B>
27 1 1 33 <A
28 0 1 3 3 <B 2
29 1 1 3 1 A> 2
30 2 1 3 1 4 A>
31 3 1 3 1 4 1 B>
32 2 1 3 1 4 1 <A
33 1 1 3 1 4 <A 2
34 0 1 3 1 <A 2 2
35 -1 1 3 <A 23
36 -2 1 <B 24
37 -1 2 B> 24
+ 41 3 2 34 B>
42 2 2 34 <A
43 1 2 33 <B 2
44 2 2 3 3 1 A> 2
45 3 2 3 3 1 4 A>
46 4 2 3 3 1 4 1 B>
47 3 2 3 3 1 4 1 <A
48 2 2 3 3 1 4 <A 2
49 1 2 3 3 1 <A 2 2
50 0 2 3 3 <A 23
51 -1 2 3 <B 24
52 0 2 1 A> 24
+ 56 4 2 1 44 A>
57 5 2 1 44 1 B>
58 4 2 1 44 1 <A
59 3 2 1 44 <A 2
+ 63 -1 2 1 <A 25
64 -2 2 <A 26
65 -1 4 A> 26
+ 71 5 47 A>
72 6 47 1 B>
73 5 47 1 <A
74 4 47 <A 2
+ 81 -3 <A 28
82 -2 1 B> 28
+ 90 6 1 38 B>
91 5 1 38 <A
92 4 1 37 <B 2
93 5 1 36 1 A> 2
94 6 1 36 1 4 A>
95 7 1 36 1 4 1 B>
96 6 1 36 1 4 1 <A
97 5 1 36 1 4 <A 2
98 4 1 36 1 <A 2 2
99 3 1 36 <A 23
100 2 1 35 <B 24
101 3 1 34 1 A> 24
+ 105 7 1 34 1 44 A>
106 8 1 34 1 44 1 B>
107 7 1 34 1 44 1 <A
108 6 1 34 1 44 <A 2
+ 112 2 1 34 1 <A 25
113 1 1 34 <A 26
114 0 1 33 <B 27
115 1 1 3 3 1 A> 27
+ 122 8 1 3 3 1 47 A>
123 9 1 3 3 1 47 1 B>
124 8 1 3 3 1 47 1 <A
125 7 1 3 3 1 47 <A 2
+ 132 0 1 3 3 1 <A 28
133 -1 1 3 3 <A 29
134 -2 1 3 <B 210
135 -1 1 1 A> 210
+ 145 9 1 1 410 A>
146 10 1 1 410 1 B>
147 9 1 1 410 1 <A
148 8 1 1 410 <A 2
+ 158 -2 1 1 <A 211
+ 160 -4 <A 213
161 -3 1 B> 213
+ 174 10 1 313 B>
175 9 1 313 <A
176 8 1 312 <B 2
177 9 1 311 1 A> 2
178 10 1 311 1 4 A>
179 11 1 311 1 4 1 B>
180 10 1 311 1 4 1 <A
181 9 1 311 1 4 <A 2
182 8 1 311 1 <A 2 2
183 7 1 311 <A 23
184 6 1 310 <B 24
185 7 1 39 1 A> 24
+ 189 11 1 39 1 44 A>
190 12 1 39 1 44 1 B>
191 11 1 39 1 44 1 <A
192 10 1 39 1 44 <A 2
+ 196 6 1 39 1 <A 25
197 5 1 39 <A 26
198 4 1 38 <B 27
199 5 1 37 1 A> 27
+ 206 12 1 37 1 47 A>
207 13 1 37 1 47 1 B>
208 12 1 37 1 47 1 <A
209 11 1 37 1 47 <A 2
+ 216 4 1 37 1 <A 28
217 3 1 37 <A 29
218 2 1 36 <B 210
219 3 1 35 1 A> 210
+ 229 13 1 35 1 410 A>
230 14 1 35 1 410 1 B>
231 13 1 35 1 410 1 <A
232 12 1 35 1 410 <A 2
+ 242 2 1 35 1 <A 211
243 1 1 35 <A 212
244 0 1 34 <B 213
245 1 1 33 1 A> 213
+ 258 14 1 33 1 413 A>
259 15 1 33 1 413 1 B>
260 14 1 33 1 413 1 <A
261 13 1 33 1 413 <A 2
+ 274 0 1 33 1 <A 214
275 -1 1 33 <A 215
276 -2 1 3 3 <B 216
277 -1 1 3 1 A> 216
+ 293 15 1 3 1 416 A>
294 16 1 3 1 416 1 B>
295 15 1 3 1 416 1 <A
296 14 1 3 1 416 <A 2
+ 312 -2 1 3 1 <A 217
313 -3 1 3 <A 218
314 -4 1 <B 219
315 -3 2 B> 219
+ 334 16 2 319 B>
335 15 2 319 <A
336 14 2 318 <B 2
337 15 2 317 1 A> 2
338 16 2 317 1 4 A>
339 17 2 317 1 4 1 B>
340 16 2 317 1 4 1 <A
341 15 2 317 1 4 <A 2
342 14 2 317 1 <A 2 2
343 13 2 317 <A 23
344 12 2 316 <B 24
345 13 2 315 1 A> 24
+ 349 17 2 315 1 44 A>
350 18 2 315 1 44 1 B>
351 17 2 315 1 44 1 <A
352 16 2 315 1 44 <A 2
+ 356 12 2 315 1 <A 25
357 11 2 315 <A 26
358 10 2 314 <B 27
359 11 2 313 1 A> 27
+ 366 18 2 313 1 47 A>
367 19 2 313 1 47 1 B>
368 18 2 313 1 47 1 <A
369 17 2 313 1 47 <A 2
+ 376 10 2 313 1 <A 28
377 9 2 313 <A 29
378 8 2 312 <B 210
379 9 2 311 1 A> 210
+ 389 19 2 311 1 410 A>
390 20 2 311 1 410 1 B>
391 19 2 311 1 410 1 <A
392 18 2 311 1 410 <A 2
+ 402 8 2 311 1 <A 211
403 7 2 311 <A 212
404 6 2 310 <B 213
405 7 2 39 1 A> 213
+ 418 20 2 39 1 413 A>
419 21 2 39 1 413 1 B>
420 20 2 39 1 413 1 <A
421 19 2 39 1 413 <A 2
+ 434 6 2 39 1 <A 214
435 5 2 39 <A 215
436 4 2 38 <B 216
437 5 2 37 1 A> 216
+ 453 21 2 37 1 416 A>
454 22 2 37 1 416 1 B>
455 21 2 37 1 416 1 <A
456 20 2 37 1 416 <A 2
+ 472 4 2 37 1 <A 217
473 3 2 37 <A 218
474 2 2 36 <B 219
475 3 2 35 1 A> 219
+ 494 22 2 35 1 419 A>
After 494 steps (201 lines): state = A.
Produced 26 nonzeros.
Tape index 22, scanned [-4 .. 22].
| State | Count | Execution count | First in step | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
| A | 389 | 26 | 43 | 157 | 25 | 138 | 0 | 2 | 16 | 6 | 20 |
| B | 105 | 30 | 3 | 51 | 21 | 1 | 7 | 4 | 15 | ||