Comment: This TM produces 1,194,050,967 nonzeros in 339,466,124,499,007,214 steps.
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | 1RB | 3RB | 3RA | 1RH | 2LB | 1 | right | B | 3 | right | B | 3 | right | A | 1 | right | H | 2 | left | B |
| B | 2LA | 4RA | 4RB | 2LB | 0RA | 2 | left | A | 4 | right | A | 4 | right | B | 2 | left | B | 0 | right | A |
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.
Pushing initial machine.
Pushing macro factor 1.
Steps BasSteps BasTpos Tape contents
0 0 0 A>
1 1 1 1 B>
2 2 0 1 <A 2
3 3 1 3 B> 2
4 4 2 3 4 B>
5 5 1 3 4 <A 2
6 6 0 3 <B 22
7 7 -1 <B 23
8 8 -2 <A 24
9 9 -1 1 B> 24
10 13 3 1 44 B>
11 14 2 1 44 <A 2
12 15 1 1 43 <B 22
13 16 2 1 42 0 A> 22
14 18 4 1 42 0 32 A>
15 19 5 1 42 0 32 1 B>
16 20 4 1 42 0 32 1 <A 2
17 21 5 1 42 0 33 B> 2
18 22 6 1 42 0 33 4 B>
19 23 5 1 42 0 33 4 <A 2
20 24 4 1 42 0 33 <B 22
21 27 1 1 42 0 <B 25
22 28 0 1 42 <A 26
23 29 -1 1 4 <B 27
24 30 0 1 0 A> 27
25 37 7 1 0 37 A>
26 38 8 1 0 37 1 B>
27 39 7 1 0 37 1 <A 2
28 40 8 1 0 38 B> 2
29 41 9 1 0 38 4 B>
30 42 8 1 0 38 4 <A 2
31 43 7 1 0 38 <B 22
32 51 -1 1 0 <B 210
33 52 -2 1 <A 211
34 53 -1 3 B> 211
35 64 10 3 411 B>
36 65 9 3 411 <A 2
37 66 8 3 410 <B 22
38 67 9 3 49 0 A> 22
39 69 11 3 49 0 32 A>
40 70 12 3 49 0 32 1 B>
41 71 11 3 49 0 32 1 <A 2
42 72 12 3 49 0 33 B> 2
43 73 13 3 49 0 33 4 B>
44 74 12 3 49 0 33 4 <A 2
45 75 11 3 49 0 33 <B 22
46 78 8 3 49 0 <B 25
47 79 7 3 49 <A 26
48 80 6 3 48 <B 27
49 81 7 3 47 0 A> 27
50 88 14 3 47 0 37 A>
51 89 15 3 47 0 37 1 B>
52 90 14 3 47 0 37 1 <A 2
53 91 15 3 47 0 38 B> 2
54 92 16 3 47 0 38 4 B>
55 93 15 3 47 0 38 4 <A 2
56 94 14 3 47 0 38 <B 22
57 102 6 3 47 0 <B 210
58 103 5 3 47 <A 211
59 104 4 3 46 <B 212
60 105 5 3 45 0 A> 212
61 117 17 3 45 0 312 A>
62 118 18 3 45 0 312 1 B>
63 119 17 3 45 0 312 1 <A 2
64 120 18 3 45 0 313 B> 2
65 121 19 3 45 0 313 4 B>
66 122 18 3 45 0 313 4 <A 2
67 123 17 3 45 0 313 <B 22
68 136 4 3 45 0 <B 215
69 137 3 3 45 <A 216
70 138 2 3 44 <B 217
71 139 3 3 43 0 A> 217
72 156 20 3 43 0 317 A>
73 157 21 3 43 0 317 1 B>
74 158 20 3 43 0 317 1 <A 2
75 159 21 3 43 0 318 B> 2
76 160 22 3 43 0 318 4 B>
77 161 21 3 43 0 318 4 <A 2
78 162 20 3 43 0 318 <B 22
79 180 2 3 43 0 <B 220
80 181 1 3 43 <A 221
81 182 0 3 42 <B 222
82 183 1 3 4 0 A> 222
83 205 23 3 4 0 322 A>
84 206 24 3 4 0 322 1 B>
85 207 23 3 4 0 322 1 <A 2
86 208 24 3 4 0 323 B> 2
87 209 25 3 4 0 323 4 B>
88 210 24 3 4 0 323 4 <A 2
89 211 23 3 4 0 323 <B 22
90 234 0 3 4 0 <B 225
91 235 -1 3 4 <A 226
92 236 -2 3 <B 227
93 237 -3 <B 228
94 238 -4 <A 229
95 239 -3 1 B> 229
96 268 26 1 429 B>
97 269 25 1 429 <A 2
98 270 24 1 428 <B 22
99 271 25 1 427 0 A> 22
100 273 27 1 427 0 32 A>
101 274 28 1 427 0 32 1 B>
102 275 27 1 427 0 32 1 <A 2
103 276 28 1 427 0 33 B> 2
104 277 29 1 427 0 33 4 B>
105 278 28 1 427 0 33 4 <A 2
106 279 27 1 427 0 33 <B 22
107 282 24 1 427 0 <B 25
108 283 23 1 427 <A 26
109 284 22 1 426 <B 27
110 285 23 1 425 0 A> 27
111 292 30 1 425 0 37 A>
112 293 31 1 425 0 37 1 B>
113 294 30 1 425 0 37 1 <A 2
114 295 31 1 425 0 38 B> 2
115 296 32 1 425 0 38 4 B>
116 297 31 1 425 0 38 4 <A 2
117 298 30 1 425 0 38 <B 22
118 306 22 1 425 0 <B 210
119 307 21 1 425 <A 211
120 308 20 1 424 <B 212
121 309 21 1 423 0 A> 212
122 321 33 1 423 0 312 A>
123 322 34 1 423 0 312 1 B>
124 323 33 1 423 0 312 1 <A 2
125 324 34 1 423 0 313 B> 2
126 325 35 1 423 0 313 4 B>
127 326 34 1 423 0 313 4 <A 2
128 327 33 1 423 0 313 <B 22
129 340 20 1 423 0 <B 215
130 341 19 1 423 <A 216
131 342 18 1 422 <B 217
132 343 19 1 421 0 A> 217
133 360 36 1 421 0 317 A>
134 361 37 1 421 0 317 1 B>
135 362 36 1 421 0 317 1 <A 2
136 363 37 1 421 0 318 B> 2
137 364 38 1 421 0 318 4 B>
138 365 37 1 421 0 318 4 <A 2
139 366 36 1 421 0 318 <B 22
140 384 18 1 421 0 <B 220
141 385 17 1 421 <A 221
142 386 16 1 420 <B 222
143 387 17 1 419 0 A> 222
144 409 39 1 419 0 322 A>
145 410 40 1 419 0 322 1 B>
146 411 39 1 419 0 322 1 <A 2
147 412 40 1 419 0 323 B> 2
148 413 41 1 419 0 323 4 B>
149 414 40 1 419 0 323 4 <A 2
150 415 39 1 419 0 323 <B 22
151 438 16 1 419 0 <B 225
152 439 15 1 419 <A 226
153 440 14 1 418 <B 227
154 441 15 1 417 0 A> 227
155 468 42 1 417 0 327 A>
156 469 43 1 417 0 327 1 B>
157 470 42 1 417 0 327 1 <A 2
158 471 43 1 417 0 328 B> 2
159 472 44 1 417 0 328 4 B>
160 473 43 1 417 0 328 4 <A 2
161 474 42 1 417 0 328 <B 22
162 502 14 1 417 0 <B 230
163 503 13 1 417 <A 231
164 504 12 1 416 <B 232
165 505 13 1 415 0 A> 232
166 537 45 1 415 0 332 A>
167 538 46 1 415 0 332 1 B>
168 539 45 1 415 0 332 1 <A 2
169 540 46 1 415 0 333 B> 2
170 541 47 1 415 0 333 4 B>
171 542 46 1 415 0 333 4 <A 2
172 543 45 1 415 0 333 <B 22
173 576 12 1 415 0 <B 235
174 577 11 1 415 <A 236
175 578 10 1 414 <B 237
176 579 11 1 413 0 A> 237
177 616 48 1 413 0 337 A>
178 617 49 1 413 0 337 1 B>
179 618 48 1 413 0 337 1 <A 2
180 619 49 1 413 0 338 B> 2
181 620 50 1 413 0 338 4 B>
182 621 49 1 413 0 338 4 <A 2
183 622 48 1 413 0 338 <B 22
184 660 10 1 413 0 <B 240
185 661 9 1 413 <A 241
186 662 8 1 412 <B 242
187 663 9 1 411 0 A> 242
188 705 51 1 411 0 342 A>
189 706 52 1 411 0 342 1 B>
190 707 51 1 411 0 342 1 <A 2
191 708 52 1 411 0 343 B> 2
192 709 53 1 411 0 343 4 B>
193 710 52 1 411 0 343 4 <A 2
194 711 51 1 411 0 343 <B 22
195 754 8 1 411 0 <B 245
196 755 7 1 411 <A 246
197 756 6 1 410 <B 247
198 757 7 1 49 0 A> 247
199 804 54 1 49 0 347 A>
200 805 55 1 49 0 347 1 B>
Lines: 201
Top steps: 200
Macro steps: 200
Basic steps: 805
Tape index: 55
nonzeros: 58
log10(nonzeros): 1.763
log10(steps ): 2.906
Input to awk program:
gohalt 1
nbs 5
T 2-state 5-symbol #h from T.J. & S. Ligocki
5T 1RB 3RB 3RA 1RH 2LB 2LA 4RA 4RB 2LB 0RA
: 1,194,050,967 339,466,124,499,007,214
L 6
M 201
pref sim
machv Lig25_h just simple
machv Lig25_h-r with repetitions reduced
machv Lig25_h-1 with tape symbol exponents
machv Lig25_h-m as 1-macro machine
machv Lig25_h-a as 1-macro machine with pure additive config-TRs
iam Lig25_h-m
mtype 1
mmtyp 1
r 1
H 1
mac 0
E 2
sympr
HM 1
date Tue Jul 6 22:12:49 CEST 2010
edate Tue Jul 6 22:12:49 CEST 2010
bnspeed 1
Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $
$Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $
$Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $
$Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $
$Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $
$Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $
bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:12:49 CEST 2010