Comment: This TM produces 1,194,050,967 nonzeros in 339,466,124,499,007,214 steps.
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | 1RB | 3RB | 3RA | 1RH | 2LB | 1 | right | B | 3 | right | B | 3 | right | A | 1 | right | H | 2 | left | B |
B | 2LA | 4RA | 4RB | 2LB | 0RA | 2 | left | A | 4 | right | A | 4 | right | B | 2 | left | B | 0 | right | A |
The same TM just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. Simulation is done as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Pushing initial machine. Pushing macro factor 1. Steps BasSteps BasTpos Tape contents 0 0 0 A> 1 1 1 1 B> 2 2 0 1 <A 2 3 3 1 3 B> 2 4 4 2 3 4 B> 5 5 1 3 4 <A 2 6 6 0 3 <B 22 7 7 -1 <B 23 8 8 -2 <A 24 9 9 -1 1 B> 24 10 13 3 1 44 B> 11 14 2 1 44 <A 2 12 15 1 1 43 <B 22 13 16 2 1 42 0 A> 22 14 18 4 1 42 0 32 A> 15 19 5 1 42 0 32 1 B> 16 20 4 1 42 0 32 1 <A 2 17 21 5 1 42 0 33 B> 2 18 22 6 1 42 0 33 4 B> 19 23 5 1 42 0 33 4 <A 2 20 24 4 1 42 0 33 <B 22 21 27 1 1 42 0 <B 25 22 28 0 1 42 <A 26 23 29 -1 1 4 <B 27 24 30 0 1 0 A> 27 25 37 7 1 0 37 A> 26 38 8 1 0 37 1 B> 27 39 7 1 0 37 1 <A 2 28 40 8 1 0 38 B> 2 29 41 9 1 0 38 4 B> 30 42 8 1 0 38 4 <A 2 31 43 7 1 0 38 <B 22 32 51 -1 1 0 <B 210 33 52 -2 1 <A 211 34 53 -1 3 B> 211 35 64 10 3 411 B> 36 65 9 3 411 <A 2 37 66 8 3 410 <B 22 38 67 9 3 49 0 A> 22 39 69 11 3 49 0 32 A> 40 70 12 3 49 0 32 1 B> 41 71 11 3 49 0 32 1 <A 2 42 72 12 3 49 0 33 B> 2 43 73 13 3 49 0 33 4 B> 44 74 12 3 49 0 33 4 <A 2 45 75 11 3 49 0 33 <B 22 46 78 8 3 49 0 <B 25 47 79 7 3 49 <A 26 48 80 6 3 48 <B 27 49 81 7 3 47 0 A> 27 50 88 14 3 47 0 37 A> 51 89 15 3 47 0 37 1 B> 52 90 14 3 47 0 37 1 <A 2 53 91 15 3 47 0 38 B> 2 54 92 16 3 47 0 38 4 B> 55 93 15 3 47 0 38 4 <A 2 56 94 14 3 47 0 38 <B 22 57 102 6 3 47 0 <B 210 58 103 5 3 47 <A 211 59 104 4 3 46 <B 212 60 105 5 3 45 0 A> 212 61 117 17 3 45 0 312 A> 62 118 18 3 45 0 312 1 B> 63 119 17 3 45 0 312 1 <A 2 64 120 18 3 45 0 313 B> 2 65 121 19 3 45 0 313 4 B> 66 122 18 3 45 0 313 4 <A 2 67 123 17 3 45 0 313 <B 22 68 136 4 3 45 0 <B 215 69 137 3 3 45 <A 216 70 138 2 3 44 <B 217 71 139 3 3 43 0 A> 217 72 156 20 3 43 0 317 A> 73 157 21 3 43 0 317 1 B> 74 158 20 3 43 0 317 1 <A 2 75 159 21 3 43 0 318 B> 2 76 160 22 3 43 0 318 4 B> 77 161 21 3 43 0 318 4 <A 2 78 162 20 3 43 0 318 <B 22 79 180 2 3 43 0 <B 220 80 181 1 3 43 <A 221 81 182 0 3 42 <B 222 82 183 1 3 4 0 A> 222 83 205 23 3 4 0 322 A> 84 206 24 3 4 0 322 1 B> 85 207 23 3 4 0 322 1 <A 2 86 208 24 3 4 0 323 B> 2 87 209 25 3 4 0 323 4 B> 88 210 24 3 4 0 323 4 <A 2 89 211 23 3 4 0 323 <B 22 90 234 0 3 4 0 <B 225 91 235 -1 3 4 <A 226 92 236 -2 3 <B 227 93 237 -3 <B 228 94 238 -4 <A 229 95 239 -3 1 B> 229 96 268 26 1 429 B> 97 269 25 1 429 <A 2 98 270 24 1 428 <B 22 99 271 25 1 427 0 A> 22 100 273 27 1 427 0 32 A> 101 274 28 1 427 0 32 1 B> 102 275 27 1 427 0 32 1 <A 2 103 276 28 1 427 0 33 B> 2 104 277 29 1 427 0 33 4 B> 105 278 28 1 427 0 33 4 <A 2 106 279 27 1 427 0 33 <B 22 107 282 24 1 427 0 <B 25 108 283 23 1 427 <A 26 109 284 22 1 426 <B 27 110 285 23 1 425 0 A> 27 111 292 30 1 425 0 37 A> 112 293 31 1 425 0 37 1 B> 113 294 30 1 425 0 37 1 <A 2 114 295 31 1 425 0 38 B> 2 115 296 32 1 425 0 38 4 B> 116 297 31 1 425 0 38 4 <A 2 117 298 30 1 425 0 38 <B 22 118 306 22 1 425 0 <B 210 119 307 21 1 425 <A 211 120 308 20 1 424 <B 212 121 309 21 1 423 0 A> 212 122 321 33 1 423 0 312 A> 123 322 34 1 423 0 312 1 B> 124 323 33 1 423 0 312 1 <A 2 125 324 34 1 423 0 313 B> 2 126 325 35 1 423 0 313 4 B> 127 326 34 1 423 0 313 4 <A 2 128 327 33 1 423 0 313 <B 22 129 340 20 1 423 0 <B 215 130 341 19 1 423 <A 216 131 342 18 1 422 <B 217 132 343 19 1 421 0 A> 217 133 360 36 1 421 0 317 A> 134 361 37 1 421 0 317 1 B> 135 362 36 1 421 0 317 1 <A 2 136 363 37 1 421 0 318 B> 2 137 364 38 1 421 0 318 4 B> 138 365 37 1 421 0 318 4 <A 2 139 366 36 1 421 0 318 <B 22 140 384 18 1 421 0 <B 220 141 385 17 1 421 <A 221 142 386 16 1 420 <B 222 143 387 17 1 419 0 A> 222 144 409 39 1 419 0 322 A> 145 410 40 1 419 0 322 1 B> 146 411 39 1 419 0 322 1 <A 2 147 412 40 1 419 0 323 B> 2 148 413 41 1 419 0 323 4 B> 149 414 40 1 419 0 323 4 <A 2 150 415 39 1 419 0 323 <B 22 151 438 16 1 419 0 <B 225 152 439 15 1 419 <A 226 153 440 14 1 418 <B 227 154 441 15 1 417 0 A> 227 155 468 42 1 417 0 327 A> 156 469 43 1 417 0 327 1 B> 157 470 42 1 417 0 327 1 <A 2 158 471 43 1 417 0 328 B> 2 159 472 44 1 417 0 328 4 B> 160 473 43 1 417 0 328 4 <A 2 161 474 42 1 417 0 328 <B 22 162 502 14 1 417 0 <B 230 163 503 13 1 417 <A 231 164 504 12 1 416 <B 232 165 505 13 1 415 0 A> 232 166 537 45 1 415 0 332 A> 167 538 46 1 415 0 332 1 B> 168 539 45 1 415 0 332 1 <A 2 169 540 46 1 415 0 333 B> 2 170 541 47 1 415 0 333 4 B> 171 542 46 1 415 0 333 4 <A 2 172 543 45 1 415 0 333 <B 22 173 576 12 1 415 0 <B 235 174 577 11 1 415 <A 236 175 578 10 1 414 <B 237 176 579 11 1 413 0 A> 237 177 616 48 1 413 0 337 A> 178 617 49 1 413 0 337 1 B> 179 618 48 1 413 0 337 1 <A 2 180 619 49 1 413 0 338 B> 2 181 620 50 1 413 0 338 4 B> 182 621 49 1 413 0 338 4 <A 2 183 622 48 1 413 0 338 <B 22 184 660 10 1 413 0 <B 240 185 661 9 1 413 <A 241 186 662 8 1 412 <B 242 187 663 9 1 411 0 A> 242 188 705 51 1 411 0 342 A> 189 706 52 1 411 0 342 1 B> 190 707 51 1 411 0 342 1 <A 2 191 708 52 1 411 0 343 B> 2 192 709 53 1 411 0 343 4 B> 193 710 52 1 411 0 343 4 <A 2 194 711 51 1 411 0 343 <B 22 195 754 8 1 411 0 <B 245 196 755 7 1 411 <A 246 197 756 6 1 410 <B 247 198 757 7 1 49 0 A> 247 199 804 54 1 49 0 347 A> 200 805 55 1 49 0 347 1 B> Lines: 201 Top steps: 200 Macro steps: 200 Basic steps: 805 Tape index: 55 nonzeros: 58 log10(nonzeros): 1.763 log10(steps ): 2.906
Input to awk program: gohalt 1 nbs 5 T 2-state 5-symbol #h from T.J. & S. Ligocki 5T 1RB 3RB 3RA 1RH 2LB 2LA 4RA 4RB 2LB 0RA : 1,194,050,967 339,466,124,499,007,214 L 6 M 201 pref sim machv Lig25_h just simple machv Lig25_h-r with repetitions reduced machv Lig25_h-1 with tape symbol exponents machv Lig25_h-m as 1-macro machine machv Lig25_h-a as 1-macro machine with pure additive config-TRs iam Lig25_h-m mtype 1 mmtyp 1 r 1 H 1 mac 0 E 2 sympr HM 1 date Tue Jul 6 22:12:49 CEST 2010 edate Tue Jul 6 22:12:49 CEST 2010 bnspeed 1Start: Tue Jul 6 22:12:49 CEST 2010
Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;