2-state 5-symbol #h from T.J. & S. Ligocki

Comment: This TM produces 1,194,050,967 nonzeros in 339,466,124,499,007,214 steps.

State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 3RB 3RA 1RH 2LB 1 right B 3 right B 3 right A 1 right H 2 left B
B 2LA 4RA 4RB 2LB 0RA 2 left A 4 right A 4 right B 2 left B 0 right A
Transition table
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

Pushing initial machine.
Pushing macro factor 1.

Steps BasSteps BasTpos  Tape contents
    0        0       0  A>
    1        1       1  1 B>
    2        2       0  1 <A 2
    3        3       1  3 B> 2
    4        4       2  3 4 B>
    5        5       1  3 4 <A 2
    6        6       0  3 <B 22
    7        7      -1  <B 23
    8        8      -2  <A 24
    9        9      -1  1 B> 24
   10       13       3  1 44 B>
   11       14       2  1 44 <A 2
   12       15       1  1 43 <B 22
   13       16       2  1 42 0 A> 22
   14       18       4  1 42 0 32 A>
   15       19       5  1 42 0 32 1 B>
   16       20       4  1 42 0 32 1 <A 2
   17       21       5  1 42 0 33 B> 2
   18       22       6  1 42 0 33 4 B>
   19       23       5  1 42 0 33 4 <A 2
   20       24       4  1 42 0 33 <B 22
   21       27       1  1 42 0 <B 25
   22       28       0  1 42 <A 26
   23       29      -1  1 4 <B 27
   24       30       0  1 0 A> 27
   25       37       7  1 0 37 A>
   26       38       8  1 0 37 1 B>
   27       39       7  1 0 37 1 <A 2
   28       40       8  1 0 38 B> 2
   29       41       9  1 0 38 4 B>
   30       42       8  1 0 38 4 <A 2
   31       43       7  1 0 38 <B 22
   32       51      -1  1 0 <B 210
   33       52      -2  1 <A 211
   34       53      -1  3 B> 211
   35       64      10  3 411 B>
   36       65       9  3 411 <A 2
   37       66       8  3 410 <B 22
   38       67       9  3 49 0 A> 22
   39       69      11  3 49 0 32 A>
   40       70      12  3 49 0 32 1 B>
   41       71      11  3 49 0 32 1 <A 2
   42       72      12  3 49 0 33 B> 2
   43       73      13  3 49 0 33 4 B>
   44       74      12  3 49 0 33 4 <A 2
   45       75      11  3 49 0 33 <B 22
   46       78       8  3 49 0 <B 25
   47       79       7  3 49 <A 26
   48       80       6  3 48 <B 27
   49       81       7  3 47 0 A> 27
   50       88      14  3 47 0 37 A>
   51       89      15  3 47 0 37 1 B>
   52       90      14  3 47 0 37 1 <A 2
   53       91      15  3 47 0 38 B> 2
   54       92      16  3 47 0 38 4 B>
   55       93      15  3 47 0 38 4 <A 2
   56       94      14  3 47 0 38 <B 22
   57      102       6  3 47 0 <B 210
   58      103       5  3 47 <A 211
   59      104       4  3 46 <B 212
   60      105       5  3 45 0 A> 212
   61      117      17  3 45 0 312 A>
   62      118      18  3 45 0 312 1 B>
   63      119      17  3 45 0 312 1 <A 2
   64      120      18  3 45 0 313 B> 2
   65      121      19  3 45 0 313 4 B>
   66      122      18  3 45 0 313 4 <A 2
   67      123      17  3 45 0 313 <B 22
   68      136       4  3 45 0 <B 215
   69      137       3  3 45 <A 216
   70      138       2  3 44 <B 217
   71      139       3  3 43 0 A> 217
   72      156      20  3 43 0 317 A>
   73      157      21  3 43 0 317 1 B>
   74      158      20  3 43 0 317 1 <A 2
   75      159      21  3 43 0 318 B> 2
   76      160      22  3 43 0 318 4 B>
   77      161      21  3 43 0 318 4 <A 2
   78      162      20  3 43 0 318 <B 22
   79      180       2  3 43 0 <B 220
   80      181       1  3 43 <A 221
   81      182       0  3 42 <B 222
   82      183       1  3 4 0 A> 222
   83      205      23  3 4 0 322 A>
   84      206      24  3 4 0 322 1 B>
   85      207      23  3 4 0 322 1 <A 2
   86      208      24  3 4 0 323 B> 2
   87      209      25  3 4 0 323 4 B>
   88      210      24  3 4 0 323 4 <A 2
   89      211      23  3 4 0 323 <B 22
   90      234       0  3 4 0 <B 225
   91      235      -1  3 4 <A 226
   92      236      -2  3 <B 227
   93      237      -3  <B 228
   94      238      -4  <A 229
   95      239      -3  1 B> 229
   96      268      26  1 429 B>
   97      269      25  1 429 <A 2
   98      270      24  1 428 <B 22
   99      271      25  1 427 0 A> 22
  100      273      27  1 427 0 32 A>
  101      274      28  1 427 0 32 1 B>
  102      275      27  1 427 0 32 1 <A 2
  103      276      28  1 427 0 33 B> 2
  104      277      29  1 427 0 33 4 B>
  105      278      28  1 427 0 33 4 <A 2
  106      279      27  1 427 0 33 <B 22
  107      282      24  1 427 0 <B 25
  108      283      23  1 427 <A 26
  109      284      22  1 426 <B 27
  110      285      23  1 425 0 A> 27
  111      292      30  1 425 0 37 A>
  112      293      31  1 425 0 37 1 B>
  113      294      30  1 425 0 37 1 <A 2
  114      295      31  1 425 0 38 B> 2
  115      296      32  1 425 0 38 4 B>
  116      297      31  1 425 0 38 4 <A 2
  117      298      30  1 425 0 38 <B 22
  118      306      22  1 425 0 <B 210
  119      307      21  1 425 <A 211
  120      308      20  1 424 <B 212
  121      309      21  1 423 0 A> 212
  122      321      33  1 423 0 312 A>
  123      322      34  1 423 0 312 1 B>
  124      323      33  1 423 0 312 1 <A 2
  125      324      34  1 423 0 313 B> 2
  126      325      35  1 423 0 313 4 B>
  127      326      34  1 423 0 313 4 <A 2
  128      327      33  1 423 0 313 <B 22
  129      340      20  1 423 0 <B 215
  130      341      19  1 423 <A 216
  131      342      18  1 422 <B 217
  132      343      19  1 421 0 A> 217
  133      360      36  1 421 0 317 A>
  134      361      37  1 421 0 317 1 B>
  135      362      36  1 421 0 317 1 <A 2
  136      363      37  1 421 0 318 B> 2
  137      364      38  1 421 0 318 4 B>
  138      365      37  1 421 0 318 4 <A 2
  139      366      36  1 421 0 318 <B 22
  140      384      18  1 421 0 <B 220
  141      385      17  1 421 <A 221
  142      386      16  1 420 <B 222
  143      387      17  1 419 0 A> 222
  144      409      39  1 419 0 322 A>
  145      410      40  1 419 0 322 1 B>
  146      411      39  1 419 0 322 1 <A 2
  147      412      40  1 419 0 323 B> 2
  148      413      41  1 419 0 323 4 B>
  149      414      40  1 419 0 323 4 <A 2
  150      415      39  1 419 0 323 <B 22
  151      438      16  1 419 0 <B 225
  152      439      15  1 419 <A 226
  153      440      14  1 418 <B 227
  154      441      15  1 417 0 A> 227
  155      468      42  1 417 0 327 A>
  156      469      43  1 417 0 327 1 B>
  157      470      42  1 417 0 327 1 <A 2
  158      471      43  1 417 0 328 B> 2
  159      472      44  1 417 0 328 4 B>
  160      473      43  1 417 0 328 4 <A 2
  161      474      42  1 417 0 328 <B 22
  162      502      14  1 417 0 <B 230
  163      503      13  1 417 <A 231
  164      504      12  1 416 <B 232
  165      505      13  1 415 0 A> 232
  166      537      45  1 415 0 332 A>
  167      538      46  1 415 0 332 1 B>
  168      539      45  1 415 0 332 1 <A 2
  169      540      46  1 415 0 333 B> 2
  170      541      47  1 415 0 333 4 B>
  171      542      46  1 415 0 333 4 <A 2
  172      543      45  1 415 0 333 <B 22
  173      576      12  1 415 0 <B 235
  174      577      11  1 415 <A 236
  175      578      10  1 414 <B 237
  176      579      11  1 413 0 A> 237
  177      616      48  1 413 0 337 A>
  178      617      49  1 413 0 337 1 B>
  179      618      48  1 413 0 337 1 <A 2
  180      619      49  1 413 0 338 B> 2
  181      620      50  1 413 0 338 4 B>
  182      621      49  1 413 0 338 4 <A 2
  183      622      48  1 413 0 338 <B 22
  184      660      10  1 413 0 <B 240
  185      661       9  1 413 <A 241
  186      662       8  1 412 <B 242
  187      663       9  1 411 0 A> 242
  188      705      51  1 411 0 342 A>
  189      706      52  1 411 0 342 1 B>
  190      707      51  1 411 0 342 1 <A 2
  191      708      52  1 411 0 343 B> 2
  192      709      53  1 411 0 343 4 B>
  193      710      52  1 411 0 343 4 <A 2
  194      711      51  1 411 0 343 <B 22
  195      754       8  1 411 0 <B 245
  196      755       7  1 411 <A 246
  197      756       6  1 410 <B 247
  198      757       7  1 49 0 A> 247
  199      804      54  1 49 0 347 A>
  200      805      55  1 49 0 347 1 B>

Lines:       201
Top steps:   200
Macro steps: 200
Basic steps: 805
Tape index:  55
nonzeros:    58
log10(nonzeros):    1.763
log10(steps   ):    2.906

The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Input to awk program:
    gohalt 1
    nbs 5
    T 2-state 5-symbol #h from T.J. & S. Ligocki
    5T  1RB 3RB 3RA 1RH 2LB  2LA 4RA 4RB 2LB 0RA
    : 1,194,050,967        339,466,124,499,007,214
    L 6
    M	201
    pref	sim
    machv Lig25_h  	just simple
    machv Lig25_h-r	with repetitions reduced
    machv Lig25_h-1	with tape symbol exponents
    machv Lig25_h-m	as 1-macro machine
    machv Lig25_h-a	as 1-macro machine with pure additive config-TRs
    iam	Lig25_h-m
    mtype	1
    mmtyp	1
    r	1
    H	1
    mac	0
    E	2
    sympr	
    HM	1
    date	Tue Jul  6 22:12:49 CEST 2010
    edate	Tue Jul  6 22:12:49 CEST 2010
    bnspeed	1

Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:12:49 CEST 2010
Ready: Tue Jul 6 22:12:49 CEST 2010