2-state 5-symbol #h from T.J. & S. Ligocki

Comment: This TM produces 1,194,050,967 nonzeros in 339,466,124,499,007,214 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 1RB 3RB 3RA 1RH 2LB 1 right B 3 right B 3 right A 1 right H 2 left B
B 2LA 4RA 4RB 2LB 0RA 2 left A 4 right A 4 right B 2 left B 0 right A
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  1 B>
     2     0  1 <A 2
     3     1  3 B> 2
     4     2  3 4 B>
     5     1  3 4 <A 2
     6     0  3 <B 2 2
     7    -1  <B 23
     8    -2  <A 24
     9    -1  1 B> 24
+   13     3  1 44 B>
    14     2  1 44 <A 2
    15     1  1 43 <B 2 2
    16     2  1 4 4 0 A> 2 2
+   18     4  1 4 4 0 3 3 A>
    19     5  1 4 4 0 3 3 1 B>
    20     4  1 4 4 0 3 3 1 <A 2
    21     5  1 4 4 0 33 B> 2
    22     6  1 4 4 0 33 4 B>
    23     5  1 4 4 0 33 4 <A 2
    24     4  1 4 4 0 33 <B 2 2
+   27     1  1 4 4 0 <B 25
    28     0  1 4 4 <A 26
    29    -1  1 4 <B 27
    30     0  1 0 A> 27
+   37     7  1 0 37 A>
    38     8  1 0 37 1 B>
    39     7  1 0 37 1 <A 2
    40     8  1 0 38 B> 2
    41     9  1 0 38 4 B>
    42     8  1 0 38 4 <A 2
    43     7  1 0 38 <B 2 2
+   51    -1  1 0 <B 210
    52    -2  1 <A 211
    53    -1  3 B> 211
+   64    10  3 411 B>
    65     9  3 411 <A 2
    66     8  3 410 <B 2 2
    67     9  3 49 0 A> 2 2
+   69    11  3 49 0 3 3 A>
    70    12  3 49 0 3 3 1 B>
    71    11  3 49 0 3 3 1 <A 2
    72    12  3 49 0 33 B> 2
    73    13  3 49 0 33 4 B>
    74    12  3 49 0 33 4 <A 2
    75    11  3 49 0 33 <B 2 2
+   78     8  3 49 0 <B 25
    79     7  3 49 <A 26
    80     6  3 48 <B 27
    81     7  3 47 0 A> 27
+   88    14  3 47 0 37 A>
    89    15  3 47 0 37 1 B>
    90    14  3 47 0 37 1 <A 2
    91    15  3 47 0 38 B> 2
    92    16  3 47 0 38 4 B>
    93    15  3 47 0 38 4 <A 2
    94    14  3 47 0 38 <B 2 2
+  102     6  3 47 0 <B 210
   103     5  3 47 <A 211
   104     4  3 46 <B 212
   105     5  3 45 0 A> 212
+  117    17  3 45 0 312 A>
   118    18  3 45 0 312 1 B>
   119    17  3 45 0 312 1 <A 2
   120    18  3 45 0 313 B> 2
   121    19  3 45 0 313 4 B>
   122    18  3 45 0 313 4 <A 2
   123    17  3 45 0 313 <B 2 2
+  136     4  3 45 0 <B 215
   137     3  3 45 <A 216
   138     2  3 44 <B 217
   139     3  3 43 0 A> 217
+  156    20  3 43 0 317 A>
   157    21  3 43 0 317 1 B>
   158    20  3 43 0 317 1 <A 2
   159    21  3 43 0 318 B> 2
   160    22  3 43 0 318 4 B>
   161    21  3 43 0 318 4 <A 2
   162    20  3 43 0 318 <B 2 2
+  180     2  3 43 0 <B 220
   181     1  3 43 <A 221
   182     0  3 4 4 <B 222
   183     1  3 4 0 A> 222
+  205    23  3 4 0 322 A>
   206    24  3 4 0 322 1 B>
   207    23  3 4 0 322 1 <A 2
   208    24  3 4 0 323 B> 2
   209    25  3 4 0 323 4 B>
   210    24  3 4 0 323 4 <A 2
   211    23  3 4 0 323 <B 2 2
+  234     0  3 4 0 <B 225
   235    -1  3 4 <A 226
   236    -2  3 <B 227
   237    -3  <B 228
   238    -4  <A 229
   239    -3  1 B> 229
+  268    26  1 429 B>
   269    25  1 429 <A 2
   270    24  1 428 <B 2 2
   271    25  1 427 0 A> 2 2
+  273    27  1 427 0 3 3 A>
   274    28  1 427 0 3 3 1 B>
   275    27  1 427 0 3 3 1 <A 2
   276    28  1 427 0 33 B> 2
   277    29  1 427 0 33 4 B>
   278    28  1 427 0 33 4 <A 2
   279    27  1 427 0 33 <B 2 2
+  282    24  1 427 0 <B 25
   283    23  1 427 <A 26
   284    22  1 426 <B 27
   285    23  1 425 0 A> 27
+  292    30  1 425 0 37 A>
   293    31  1 425 0 37 1 B>
   294    30  1 425 0 37 1 <A 2
   295    31  1 425 0 38 B> 2
   296    32  1 425 0 38 4 B>
   297    31  1 425 0 38 4 <A 2
   298    30  1 425 0 38 <B 2 2
+  306    22  1 425 0 <B 210
   307    21  1 425 <A 211
   308    20  1 424 <B 212
   309    21  1 423 0 A> 212
+  321    33  1 423 0 312 A>
   322    34  1 423 0 312 1 B>
   323    33  1 423 0 312 1 <A 2
   324    34  1 423 0 313 B> 2
   325    35  1 423 0 313 4 B>
   326    34  1 423 0 313 4 <A 2
   327    33  1 423 0 313 <B 2 2
+  340    20  1 423 0 <B 215
   341    19  1 423 <A 216
   342    18  1 422 <B 217
   343    19  1 421 0 A> 217
+  360    36  1 421 0 317 A>
   361    37  1 421 0 317 1 B>
   362    36  1 421 0 317 1 <A 2
   363    37  1 421 0 318 B> 2
   364    38  1 421 0 318 4 B>
   365    37  1 421 0 318 4 <A 2
   366    36  1 421 0 318 <B 2 2
+  384    18  1 421 0 <B 220
   385    17  1 421 <A 221
   386    16  1 420 <B 222
   387    17  1 419 0 A> 222
+  409    39  1 419 0 322 A>
   410    40  1 419 0 322 1 B>
   411    39  1 419 0 322 1 <A 2
   412    40  1 419 0 323 B> 2
   413    41  1 419 0 323 4 B>
   414    40  1 419 0 323 4 <A 2
   415    39  1 419 0 323 <B 2 2
+  438    16  1 419 0 <B 225
   439    15  1 419 <A 226
   440    14  1 418 <B 227
   441    15  1 417 0 A> 227
+  468    42  1 417 0 327 A>
   469    43  1 417 0 327 1 B>
   470    42  1 417 0 327 1 <A 2
   471    43  1 417 0 328 B> 2
   472    44  1 417 0 328 4 B>
   473    43  1 417 0 328 4 <A 2
   474    42  1 417 0 328 <B 2 2
+  502    14  1 417 0 <B 230
   503    13  1 417 <A 231
   504    12  1 416 <B 232
   505    13  1 415 0 A> 232
+  537    45  1 415 0 332 A>
   538    46  1 415 0 332 1 B>
   539    45  1 415 0 332 1 <A 2
   540    46  1 415 0 333 B> 2
   541    47  1 415 0 333 4 B>
   542    46  1 415 0 333 4 <A 2
   543    45  1 415 0 333 <B 2 2
+  576    12  1 415 0 <B 235
   577    11  1 415 <A 236
   578    10  1 414 <B 237
   579    11  1 413 0 A> 237
+  616    48  1 413 0 337 A>
   617    49  1 413 0 337 1 B>
   618    48  1 413 0 337 1 <A 2
   619    49  1 413 0 338 B> 2
   620    50  1 413 0 338 4 B>
   621    49  1 413 0 338 4 <A 2
   622    48  1 413 0 338 <B 2 2
+  660    10  1 413 0 <B 240
   661     9  1 413 <A 241
   662     8  1 412 <B 242
   663     9  1 411 0 A> 242
+  705    51  1 411 0 342 A>
   706    52  1 411 0 342 1 B>
   707    51  1 411 0 342 1 <A 2
   708    52  1 411 0 343 B> 2
   709    53  1 411 0 343 4 B>
   710    52  1 411 0 343 4 <A 2
   711    51  1 411 0 343 <B 2 2
+  754     8  1 411 0 <B 245
   755     7  1 411 <A 246
   756     6  1 410 <B 247
   757     7  1 49 0 A> 247
+  804    54  1 49 0 347 A>
   805    55  1 49 0 347 1 B>

After 805 steps (201 lines): state = B.
Produced     58 nonzeros.
Tape index 55, scanned [-4 .. 54].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 387 20 18 314   35 0 2 16   5
B 418 55   61 285 17 1   3 6 15
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:12:49 CEST 2010