Comment: This TM produces 1,194,050,967 nonzeros in 339,466,124,499,007,214 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | 1RB | 3RB | 3RA | 1RH | 2LB | 1 | right | B | 3 | right | B | 3 | right | A | 1 | right | H | 2 | left | B |
B | 2LA | 4RA | 4RB | 2LB | 0RA | 2 | left | A | 4 | right | A | 4 | right | B | 2 | left | B | 0 | right | A |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 1-macro machine. The same TM as 1-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 0 1 <A 2 3 1 3 B> 2 4 2 3 4 B> 5 1 3 4 <A 2 6 0 3 <B 2 2 7 -1 <B 23 8 -2 <A 24 9 -1 1 B> 24 + 13 3 1 44 B> 14 2 1 44 <A 2 15 1 1 43 <B 2 2 16 2 1 4 4 0 A> 2 2 + 18 4 1 4 4 0 3 3 A> 19 5 1 4 4 0 3 3 1 B> 20 4 1 4 4 0 3 3 1 <A 2 21 5 1 4 4 0 33 B> 2 22 6 1 4 4 0 33 4 B> 23 5 1 4 4 0 33 4 <A 2 24 4 1 4 4 0 33 <B 2 2 + 27 1 1 4 4 0 <B 25 28 0 1 4 4 <A 26 29 -1 1 4 <B 27 30 0 1 0 A> 27 + 37 7 1 0 37 A> 38 8 1 0 37 1 B> 39 7 1 0 37 1 <A 2 40 8 1 0 38 B> 2 41 9 1 0 38 4 B> 42 8 1 0 38 4 <A 2 43 7 1 0 38 <B 2 2 + 51 -1 1 0 <B 210 52 -2 1 <A 211 53 -1 3 B> 211 + 64 10 3 411 B> 65 9 3 411 <A 2 66 8 3 410 <B 2 2 67 9 3 49 0 A> 2 2 + 69 11 3 49 0 3 3 A> 70 12 3 49 0 3 3 1 B> 71 11 3 49 0 3 3 1 <A 2 72 12 3 49 0 33 B> 2 73 13 3 49 0 33 4 B> 74 12 3 49 0 33 4 <A 2 75 11 3 49 0 33 <B 2 2 + 78 8 3 49 0 <B 25 79 7 3 49 <A 26 80 6 3 48 <B 27 81 7 3 47 0 A> 27 + 88 14 3 47 0 37 A> 89 15 3 47 0 37 1 B> 90 14 3 47 0 37 1 <A 2 91 15 3 47 0 38 B> 2 92 16 3 47 0 38 4 B> 93 15 3 47 0 38 4 <A 2 94 14 3 47 0 38 <B 2 2 + 102 6 3 47 0 <B 210 103 5 3 47 <A 211 104 4 3 46 <B 212 105 5 3 45 0 A> 212 + 117 17 3 45 0 312 A> 118 18 3 45 0 312 1 B> 119 17 3 45 0 312 1 <A 2 120 18 3 45 0 313 B> 2 121 19 3 45 0 313 4 B> 122 18 3 45 0 313 4 <A 2 123 17 3 45 0 313 <B 2 2 + 136 4 3 45 0 <B 215 137 3 3 45 <A 216 138 2 3 44 <B 217 139 3 3 43 0 A> 217 + 156 20 3 43 0 317 A> 157 21 3 43 0 317 1 B> 158 20 3 43 0 317 1 <A 2 159 21 3 43 0 318 B> 2 160 22 3 43 0 318 4 B> 161 21 3 43 0 318 4 <A 2 162 20 3 43 0 318 <B 2 2 + 180 2 3 43 0 <B 220 181 1 3 43 <A 221 182 0 3 4 4 <B 222 183 1 3 4 0 A> 222 + 205 23 3 4 0 322 A> 206 24 3 4 0 322 1 B> 207 23 3 4 0 322 1 <A 2 208 24 3 4 0 323 B> 2 209 25 3 4 0 323 4 B> 210 24 3 4 0 323 4 <A 2 211 23 3 4 0 323 <B 2 2 + 234 0 3 4 0 <B 225 235 -1 3 4 <A 226 236 -2 3 <B 227 237 -3 <B 228 238 -4 <A 229 239 -3 1 B> 229 + 268 26 1 429 B> 269 25 1 429 <A 2 270 24 1 428 <B 2 2 271 25 1 427 0 A> 2 2 + 273 27 1 427 0 3 3 A> 274 28 1 427 0 3 3 1 B> 275 27 1 427 0 3 3 1 <A 2 276 28 1 427 0 33 B> 2 277 29 1 427 0 33 4 B> 278 28 1 427 0 33 4 <A 2 279 27 1 427 0 33 <B 2 2 + 282 24 1 427 0 <B 25 283 23 1 427 <A 26 284 22 1 426 <B 27 285 23 1 425 0 A> 27 + 292 30 1 425 0 37 A> 293 31 1 425 0 37 1 B> 294 30 1 425 0 37 1 <A 2 295 31 1 425 0 38 B> 2 296 32 1 425 0 38 4 B> 297 31 1 425 0 38 4 <A 2 298 30 1 425 0 38 <B 2 2 + 306 22 1 425 0 <B 210 307 21 1 425 <A 211 308 20 1 424 <B 212 309 21 1 423 0 A> 212 + 321 33 1 423 0 312 A> 322 34 1 423 0 312 1 B> 323 33 1 423 0 312 1 <A 2 324 34 1 423 0 313 B> 2 325 35 1 423 0 313 4 B> 326 34 1 423 0 313 4 <A 2 327 33 1 423 0 313 <B 2 2 + 340 20 1 423 0 <B 215 341 19 1 423 <A 216 342 18 1 422 <B 217 343 19 1 421 0 A> 217 + 360 36 1 421 0 317 A> 361 37 1 421 0 317 1 B> 362 36 1 421 0 317 1 <A 2 363 37 1 421 0 318 B> 2 364 38 1 421 0 318 4 B> 365 37 1 421 0 318 4 <A 2 366 36 1 421 0 318 <B 2 2 + 384 18 1 421 0 <B 220 385 17 1 421 <A 221 386 16 1 420 <B 222 387 17 1 419 0 A> 222 + 409 39 1 419 0 322 A> 410 40 1 419 0 322 1 B> 411 39 1 419 0 322 1 <A 2 412 40 1 419 0 323 B> 2 413 41 1 419 0 323 4 B> 414 40 1 419 0 323 4 <A 2 415 39 1 419 0 323 <B 2 2 + 438 16 1 419 0 <B 225 439 15 1 419 <A 226 440 14 1 418 <B 227 441 15 1 417 0 A> 227 + 468 42 1 417 0 327 A> 469 43 1 417 0 327 1 B> 470 42 1 417 0 327 1 <A 2 471 43 1 417 0 328 B> 2 472 44 1 417 0 328 4 B> 473 43 1 417 0 328 4 <A 2 474 42 1 417 0 328 <B 2 2 + 502 14 1 417 0 <B 230 503 13 1 417 <A 231 504 12 1 416 <B 232 505 13 1 415 0 A> 232 + 537 45 1 415 0 332 A> 538 46 1 415 0 332 1 B> 539 45 1 415 0 332 1 <A 2 540 46 1 415 0 333 B> 2 541 47 1 415 0 333 4 B> 542 46 1 415 0 333 4 <A 2 543 45 1 415 0 333 <B 2 2 + 576 12 1 415 0 <B 235 577 11 1 415 <A 236 578 10 1 414 <B 237 579 11 1 413 0 A> 237 + 616 48 1 413 0 337 A> 617 49 1 413 0 337 1 B> 618 48 1 413 0 337 1 <A 2 619 49 1 413 0 338 B> 2 620 50 1 413 0 338 4 B> 621 49 1 413 0 338 4 <A 2 622 48 1 413 0 338 <B 2 2 + 660 10 1 413 0 <B 240 661 9 1 413 <A 241 662 8 1 412 <B 242 663 9 1 411 0 A> 242 + 705 51 1 411 0 342 A> 706 52 1 411 0 342 1 B> 707 51 1 411 0 342 1 <A 2 708 52 1 411 0 343 B> 2 709 53 1 411 0 343 4 B> 710 52 1 411 0 343 4 <A 2 711 51 1 411 0 343 <B 2 2 + 754 8 1 411 0 <B 245 755 7 1 411 <A 246 756 6 1 410 <B 247 757 7 1 49 0 A> 247 + 804 54 1 49 0 347 A> 805 55 1 49 0 347 1 B> After 805 steps (201 lines): state = B. Produced 58 nonzeros. Tape index 55, scanned [-4 .. 54].
State | Count | Execution count | First in step | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
A | 387 | 20 | 18 | 314 | 35 | 0 | 2 | 16 | 5 | ||
B | 418 | 55 | 61 | 285 | 17 | 1 | 3 | 6 | 15 |