Comment: This TM produces 1,194,050,967 nonzeros in 339,466,124,499,007,214 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | 1RB | 3RB | 3RA | 1RH | 2LB | 1 | right | B | 3 | right | B | 3 | right | A | 1 | right | H | 2 | left | B |
| B | 2LA | 4RA | 4RB | 2LB | 0RA | 2 | left | A | 4 | right | A | 4 | right | B | 2 | left | B | 0 | right | A |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 1-macro machine.
The same TM as 1-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 0 1 <A 2
3 1 3 B> 2
4 2 3 4 B>
5 1 3 4 <A 2
6 0 3 <B 2 2
7 -1 <B 23
8 -2 <A 24
9 -1 1 B> 24
+ 13 3 1 44 B>
14 2 1 44 <A 2
15 1 1 43 <B 2 2
16 2 1 4 4 0 A> 2 2
+ 18 4 1 4 4 0 3 3 A>
19 5 1 4 4 0 3 3 1 B>
20 4 1 4 4 0 3 3 1 <A 2
21 5 1 4 4 0 33 B> 2
22 6 1 4 4 0 33 4 B>
23 5 1 4 4 0 33 4 <A 2
24 4 1 4 4 0 33 <B 2 2
+ 27 1 1 4 4 0 <B 25
28 0 1 4 4 <A 26
29 -1 1 4 <B 27
30 0 1 0 A> 27
+ 37 7 1 0 37 A>
38 8 1 0 37 1 B>
39 7 1 0 37 1 <A 2
40 8 1 0 38 B> 2
41 9 1 0 38 4 B>
42 8 1 0 38 4 <A 2
43 7 1 0 38 <B 2 2
+ 51 -1 1 0 <B 210
52 -2 1 <A 211
53 -1 3 B> 211
+ 64 10 3 411 B>
65 9 3 411 <A 2
66 8 3 410 <B 2 2
67 9 3 49 0 A> 2 2
+ 69 11 3 49 0 3 3 A>
70 12 3 49 0 3 3 1 B>
71 11 3 49 0 3 3 1 <A 2
72 12 3 49 0 33 B> 2
73 13 3 49 0 33 4 B>
74 12 3 49 0 33 4 <A 2
75 11 3 49 0 33 <B 2 2
+ 78 8 3 49 0 <B 25
79 7 3 49 <A 26
80 6 3 48 <B 27
81 7 3 47 0 A> 27
+ 88 14 3 47 0 37 A>
89 15 3 47 0 37 1 B>
90 14 3 47 0 37 1 <A 2
91 15 3 47 0 38 B> 2
92 16 3 47 0 38 4 B>
93 15 3 47 0 38 4 <A 2
94 14 3 47 0 38 <B 2 2
+ 102 6 3 47 0 <B 210
103 5 3 47 <A 211
104 4 3 46 <B 212
105 5 3 45 0 A> 212
+ 117 17 3 45 0 312 A>
118 18 3 45 0 312 1 B>
119 17 3 45 0 312 1 <A 2
120 18 3 45 0 313 B> 2
121 19 3 45 0 313 4 B>
122 18 3 45 0 313 4 <A 2
123 17 3 45 0 313 <B 2 2
+ 136 4 3 45 0 <B 215
137 3 3 45 <A 216
138 2 3 44 <B 217
139 3 3 43 0 A> 217
+ 156 20 3 43 0 317 A>
157 21 3 43 0 317 1 B>
158 20 3 43 0 317 1 <A 2
159 21 3 43 0 318 B> 2
160 22 3 43 0 318 4 B>
161 21 3 43 0 318 4 <A 2
162 20 3 43 0 318 <B 2 2
+ 180 2 3 43 0 <B 220
181 1 3 43 <A 221
182 0 3 4 4 <B 222
183 1 3 4 0 A> 222
+ 205 23 3 4 0 322 A>
206 24 3 4 0 322 1 B>
207 23 3 4 0 322 1 <A 2
208 24 3 4 0 323 B> 2
209 25 3 4 0 323 4 B>
210 24 3 4 0 323 4 <A 2
211 23 3 4 0 323 <B 2 2
+ 234 0 3 4 0 <B 225
235 -1 3 4 <A 226
236 -2 3 <B 227
237 -3 <B 228
238 -4 <A 229
239 -3 1 B> 229
+ 268 26 1 429 B>
269 25 1 429 <A 2
270 24 1 428 <B 2 2
271 25 1 427 0 A> 2 2
+ 273 27 1 427 0 3 3 A>
274 28 1 427 0 3 3 1 B>
275 27 1 427 0 3 3 1 <A 2
276 28 1 427 0 33 B> 2
277 29 1 427 0 33 4 B>
278 28 1 427 0 33 4 <A 2
279 27 1 427 0 33 <B 2 2
+ 282 24 1 427 0 <B 25
283 23 1 427 <A 26
284 22 1 426 <B 27
285 23 1 425 0 A> 27
+ 292 30 1 425 0 37 A>
293 31 1 425 0 37 1 B>
294 30 1 425 0 37 1 <A 2
295 31 1 425 0 38 B> 2
296 32 1 425 0 38 4 B>
297 31 1 425 0 38 4 <A 2
298 30 1 425 0 38 <B 2 2
+ 306 22 1 425 0 <B 210
307 21 1 425 <A 211
308 20 1 424 <B 212
309 21 1 423 0 A> 212
+ 321 33 1 423 0 312 A>
322 34 1 423 0 312 1 B>
323 33 1 423 0 312 1 <A 2
324 34 1 423 0 313 B> 2
325 35 1 423 0 313 4 B>
326 34 1 423 0 313 4 <A 2
327 33 1 423 0 313 <B 2 2
+ 340 20 1 423 0 <B 215
341 19 1 423 <A 216
342 18 1 422 <B 217
343 19 1 421 0 A> 217
+ 360 36 1 421 0 317 A>
361 37 1 421 0 317 1 B>
362 36 1 421 0 317 1 <A 2
363 37 1 421 0 318 B> 2
364 38 1 421 0 318 4 B>
365 37 1 421 0 318 4 <A 2
366 36 1 421 0 318 <B 2 2
+ 384 18 1 421 0 <B 220
385 17 1 421 <A 221
386 16 1 420 <B 222
387 17 1 419 0 A> 222
+ 409 39 1 419 0 322 A>
410 40 1 419 0 322 1 B>
411 39 1 419 0 322 1 <A 2
412 40 1 419 0 323 B> 2
413 41 1 419 0 323 4 B>
414 40 1 419 0 323 4 <A 2
415 39 1 419 0 323 <B 2 2
+ 438 16 1 419 0 <B 225
439 15 1 419 <A 226
440 14 1 418 <B 227
441 15 1 417 0 A> 227
+ 468 42 1 417 0 327 A>
469 43 1 417 0 327 1 B>
470 42 1 417 0 327 1 <A 2
471 43 1 417 0 328 B> 2
472 44 1 417 0 328 4 B>
473 43 1 417 0 328 4 <A 2
474 42 1 417 0 328 <B 2 2
+ 502 14 1 417 0 <B 230
503 13 1 417 <A 231
504 12 1 416 <B 232
505 13 1 415 0 A> 232
+ 537 45 1 415 0 332 A>
538 46 1 415 0 332 1 B>
539 45 1 415 0 332 1 <A 2
540 46 1 415 0 333 B> 2
541 47 1 415 0 333 4 B>
542 46 1 415 0 333 4 <A 2
543 45 1 415 0 333 <B 2 2
+ 576 12 1 415 0 <B 235
577 11 1 415 <A 236
578 10 1 414 <B 237
579 11 1 413 0 A> 237
+ 616 48 1 413 0 337 A>
617 49 1 413 0 337 1 B>
618 48 1 413 0 337 1 <A 2
619 49 1 413 0 338 B> 2
620 50 1 413 0 338 4 B>
621 49 1 413 0 338 4 <A 2
622 48 1 413 0 338 <B 2 2
+ 660 10 1 413 0 <B 240
661 9 1 413 <A 241
662 8 1 412 <B 242
663 9 1 411 0 A> 242
+ 705 51 1 411 0 342 A>
706 52 1 411 0 342 1 B>
707 51 1 411 0 342 1 <A 2
708 52 1 411 0 343 B> 2
709 53 1 411 0 343 4 B>
710 52 1 411 0 343 4 <A 2
711 51 1 411 0 343 <B 2 2
+ 754 8 1 411 0 <B 245
755 7 1 411 <A 246
756 6 1 410 <B 247
757 7 1 49 0 A> 247
+ 804 54 1 49 0 347 A>
805 55 1 49 0 347 1 B>
After 805 steps (201 lines): state = B.
Produced 58 nonzeros.
Tape index 55, scanned [-4 .. 54].
| State | Count | Execution count | First in step | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
| A | 387 | 20 | 18 | 314 | 35 | 0 | 2 | 16 | 5 | ||
| B | 418 | 55 | 61 | 285 | 17 | 1 | 3 | 6 | 15 | ||