Comment: This TM produces 1,194,050,967 nonzeros in 339,466,124,499,007,214 steps.
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | 1RB | 3RB | 3RA | 1RH | 2LB | 1 | right | B | 3 | right | B | 3 | right | A | 1 | right | H | 2 | left | B |
| B | 2LA | 4RA | 4RB | 2LB | 0RA | 2 | left | A | 4 | right | A | 4 | right | B | 2 | left | B | 0 | right | A |
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 1-macro machine.
Simulation is done as 1-macro machine with pure additive config-TRs.
Pushing initial machine.
Pushing macro factor 1.
Steps BasSteps BasTpos Tape contents
0 0 0 A>
1 1 1 1 B>
2 2 0 1 <A 2
3 3 1 3 B> 2
4 4 2 3 4 B>
5 5 1 3 4 <A 2
6 6 0 3 <B 22
7 7 -1 <B 23
8 8 -2 <A 24
9 9 -1 1 B> 24
10 13 3 1 44 B>
11 14 2 1 44 <A 2
12 15 1 1 43 <B 22
13 16 2 1 42 0 A> 22
14 18 4 1 42 0 32 A>
15 19 5 1 42 0 32 1 B>
16 20 4 1 42 0 32 1 <A 2
17 21 5 1 42 0 33 B> 2
18 22 6 1 42 0 33 4 B>
19 23 5 1 42 0 33 4 <A 2
20 24 4 1 42 0 33 <B 22
21 27 1 1 42 0 <B 25
22 28 0 1 42 <A 26
>> Try to prove a PA-CTR with 2 Vars...
0 0 0 [*]* 43+V(1) <A 21+V(2)
1 1 -1 [*]* 42+V(1) <B 22+V(2)
2 2 0 [*]* 41+V(1) 0 A> 22+V(2)
3 4+V(2) 2+V(2) [*]* 41+V(1) 0 32+V(2) A>
4 5+V(2) 3+V(2) [*]* 41+V(1) 0 32+V(2) 1 B>
5 6+V(2) 2+V(2) [*]* 41+V(1) 0 32+V(2) 1 <A 2
6 7+V(2) 3+V(2) [*]* 41+V(1) 0 33+V(2) B> 2
7 8+V(2) 4+V(2) [*]* 41+V(1) 0 33+V(2) 4 B>
8 9+V(2) 3+V(2) [*]* 41+V(1) 0 33+V(2) 4 <A 2
9 10+V(2) 2+V(2) [*]* 41+V(1) 0 33+V(2) <B 22
10 13+2*V(2) -1 [*]* 41+V(1) 0 <B 25+V(2)
11 14+2*V(2) -2 [*]* 41+V(1) <A 26+V(2)
<< Success! ==> defined new CTR 1 (PA)
23 29 -1 1 4 <B 27
24 30 0 1 0 A> 27
25 37 7 1 0 37 A>
26 38 8 1 0 37 1 B>
27 39 7 1 0 37 1 <A 2
28 40 8 1 0 38 B> 2
29 41 9 1 0 38 4 B>
30 42 8 1 0 38 4 <A 2
31 43 7 1 0 38 <B 22
32 51 -1 1 0 <B 210
33 52 -2 1 <A 211
34 53 -1 3 B> 211
35 64 10 3 411 B>
36 65 9 3 411 <A 2
>> Try to prove a PPA-CTR with 1 Vars...
0 0 0 1 42 <A 21+V(1)
1 1 -1 1 4 <B 22+V(1)
2 2 0 1 0 A> 22+V(1)
3 4+V(1) 2+V(1) 1 0 32+V(1) A>
4 5+V(1) 3+V(1) 1 0 32+V(1) 1 B>
5 6+V(1) 2+V(1) 1 0 32+V(1) 1 <A 2
6 7+V(1) 3+V(1) 1 0 33+V(1) B> 2
7 8+V(1) 4+V(1) 1 0 33+V(1) 4 B>
8 9+V(1) 3+V(1) 1 0 33+V(1) 4 <A 2
9 10+V(1) 2+V(1) 1 0 33+V(1) <B 22
10 13+2*V(1) -1 1 0 <B 25+V(1)
11 14+2*V(1) -2 1 <A 26+V(1)
12 15+2*V(1) -1 3 B> 26+V(1)
13 21+3*V(1) 5+V(1) 3 46+V(1) B>
14 22+3*V(1) 4+V(1) 3 46+V(1) <A 2
<< Success! ==> defined new CTR 2 (PPA)
36 65 9 3 411 <A 2
== Executing PA-CTR 1, V(1)=8, V(2)=0, repcount=5, factor=5/2
91 235 -1 3 4 <A 226
92 236 -2 3 <B 227
93 237 -3 <B 228
94 238 -4 <A 229
95 239 -3 1 B> 229
96 268 26 1 429 B>
97 269 25 1 429 <A 2
>> Try to prove a PPA-CTR with 2 Vars...
0 0 0 31+V(1) 4 <A 21+V(2)
1 1 -1 31+V(1) <B 22+V(2)
2 2+V(1) -2+-1*V(1) <B 23+V(1)+V(2)
3 3+V(1) -3+-1*V(1) <A 24+V(1)+V(2)
4 4+V(1) -2+-1*V(1) 1 B> 24+V(1)+V(2)
5 8+2*V(1)+V(2) 2+V(2) 1 44+V(1)+V(2) B>
6 9+2*V(1)+V(2) 1+V(2) 1 44+V(1)+V(2) <A 2
<< Success! ==> defined new CTR 3 (PPA)
97 269 25 1 429 <A 2
== Executing PA-CTR 1, V(1)=26, V(2)=0, repcount=14, factor=5/2
251 1375 -3 1 4 <A 271
252 1376 -4 1 <B 272
253 1377 -3 4 A> 272
254 1449 69 4 372 A>
255 1450 70 4 372 1 B>
256 1451 69 4 372 1 <A 2
257 1452 70 4 373 B> 2
258 1453 71 4 373 4 B>
259 1454 70 4 373 4 <A 2
260 1455 69 4 373 <B 22
261 1528 -4 4 <B 275
262 1529 -3 A> 275
263 1604 72 375 A>
264 1605 73 375 1 B>
265 1606 72 375 1 <A 2
266 1607 73 376 B> 2
267 1608 74 376 4 B>
268 1609 73 376 4 <A 2
269 1610 72 376 <B 22
270 1686 -4 <B 278
271 1687 -5 <A 279
272 1688 -4 1 B> 279
273 1767 75 1 479 B>
274 1768 74 1 479 <A 2
>> Try to prove a PPA-CTR with 1 Vars...
0 0 0 1 4 <A 21+V(1)
1 1 -1 1 <B 22+V(1)
2 2 0 4 A> 22+V(1)
3 4+V(1) 2+V(1) 4 32+V(1) A>
4 5+V(1) 3+V(1) 4 32+V(1) 1 B>
5 6+V(1) 2+V(1) 4 32+V(1) 1 <A 2
6 7+V(1) 3+V(1) 4 33+V(1) B> 2
7 8+V(1) 4+V(1) 4 33+V(1) 4 B>
8 9+V(1) 3+V(1) 4 33+V(1) 4 <A 2
9 10+V(1) 2+V(1) 4 33+V(1) <B 22
10 13+2*V(1) -1 4 <B 25+V(1)
11 14+2*V(1) 0 A> 25+V(1)
12 19+3*V(1) 5+V(1) 35+V(1) A>
13 20+3*V(1) 6+V(1) 35+V(1) 1 B>
14 21+3*V(1) 5+V(1) 35+V(1) 1 <A 2
15 22+3*V(1) 6+V(1) 36+V(1) B> 2
16 23+3*V(1) 7+V(1) 36+V(1) 4 B>
17 24+3*V(1) 6+V(1) 36+V(1) 4 <A 2
18 25+3*V(1) 5+V(1) 36+V(1) <B 22
19 31+4*V(1) -1 <B 28+V(1)
20 32+4*V(1) -2 <A 29+V(1)
21 33+4*V(1) -1 1 B> 29+V(1)
22 42+5*V(1) 8+V(1) 1 49+V(1) B>
23 43+5*V(1) 7+V(1) 1 49+V(1) <A 2
<< Success! ==> defined new CTR 4 (PPA)
274 1768 74 1 479 <A 2
== Executing PA-CTR 1, V(1)=76, V(2)=0, repcount=39, factor=5/2
703 9724 -4 1 4 <A 2196
== Executing PPA-CTR 4 (once), V(1)=195
726 10742 198 1 4204 <A 2
== Executing PA-CTR 1, V(1)=201, V(2)=0, repcount=101, factor=5/2
1837 62656 -4 1 42 <A 2506
== Executing PPA-CTR 2 (once), V(1)=505
1851 64193 505 3 4511 <A 2
== Executing PA-CTR 1, V(1)=508, V(2)=0, repcount=255, factor=5/2
4656 391613 -5 3 4 <A 21276
== Executing PPA-CTR 3 (once), V(1)=0, V(2)=1275
4662 392897 1271 1 41279 <A 2
== Executing PA-CTR 1, V(1)=1276, V(2)=0, repcount=639, factor=5/2
11691 2440253 -7 1 4 <A 23196
== Executing PPA-CTR 4 (once), V(1)=3195
11714 2456271 3195 1 43204 <A 2
== Executing PA-CTR 1, V(1)=3201, V(2)=0, repcount=1601, factor=5/2
29325 15286685 -7 1 42 <A 28006
== Executing PPA-CTR 2 (once), V(1)=8005
29339 15310722 8002 3 48011 <A 2
== Executing PA-CTR 1, V(1)=8008, V(2)=0, repcount=4005, factor=5/2
73394 95546892 -8 3 4 <A 220026
== Executing PPA-CTR 3 (once), V(1)=0, V(2)=20025
73400 95566926 20018 1 420029 <A 2
== Executing PA-CTR 1, V(1)=20026, V(2)=0, repcount=10014, factor=5/2
183554 597058032 -10 1 4 <A 250071
== Executing PPA-CTR 4 (once), V(1)=50070
183577 597308425 50067 1 450079 <A 2
== Executing PA-CTR 1, V(1)=50076, V(2)=0, repcount=25039, factor=5/2
459006 3732291381 -11 1 4 <A 2125196
== Executing PPA-CTR 4 (once), V(1)=125195
459029 3732917399 125191 1 4125204 <A 2
== Executing PA-CTR 1, V(1)=125201, V(2)=0, repcount=62601, factor=5/2
1147640 23327906813 -11 1 42 <A 2313006
== Executing PPA-CTR 2 (once), V(1)=313005
1147654 23328845850 312998 3 4313011 <A 2
== Executing PA-CTR 1, V(1)=313008, V(2)=0, repcount=156505, factor=5/2
2869209 145799329520 -12 3 4 <A 2782526
== Executing PPA-CTR 3 (once), V(1)=0, V(2)=782525
2869215 145800112054 782514 1 4782529 <A 2
== Executing PA-CTR 1, V(1)=782526, V(2)=0, repcount=391264, factor=5/2
7173119 911241221910 -14 1 4 <A 21956321
== Executing PPA-CTR 4 (once), V(1)=1956320
7173142 911251003553 1956313 1 41956329 <A 2
== Executing PA-CTR 1, V(1)=1956326, V(2)=0, repcount=978164, factor=5/2
17932946 5695283861509 -15 1 4 <A 24890821
== Executing PPA-CTR 4 (once), V(1)=4890820
17932969 5695308315652 4890812 1 44890829 <A 2
== Executing PA-CTR 1, V(1)=4890826, V(2)=0, repcount=2445414, factor=5/2
44832523 35595578481358 -16 1 4 <A 212227071
== Executing PPA-CTR 4 (once), V(1)=12227070
44832546 35595639616751 12227061 1 412227079 <A 2
== Executing PA-CTR 1, V(1)=12227076, V(2)=0, repcount=6113539, factor=5/2
112081475 222472490161207 -17 1 4 <A 230567696
== Executing PPA-CTR 4 (once), V(1)=30567695
112081498 222472642999725 30567685 1 430567704 <A 2
== Executing PA-CTR 1, V(1)=30567701, V(2)=0, repcount=15283851, factor=5/2
280203859 1390453287505389 -17 1 42 <A 276419256
== Executing PPA-CTR 2 (once), V(1)=76419255
280203873 1390453516763176 76419242 3 476419261 <A 2
== Executing PA-CTR 1, V(1)=76419258, V(2)=0, repcount=38209630, factor=5/2
700509803 8690332984334346 -18 3 4 <A 2191048151
== Executing PPA-CTR 3 (once), V(1)=0, V(2)=191048150
700509809 8690333175382505 191048133 1 4191048154 <A 2
== Executing PA-CTR 1, V(1)=191048151, V(2)=0, repcount=95524076, factor=5/2
1751274645 54314579513368069 -19 1 42 <A 2477620381
== Executing PPA-CTR 2 (once), V(1)=477620380
1751274659 54314580946229231 477620365 3 4477620386 <A 2
== Executing PA-CTR 1, V(1)=477620383, V(2)=0, repcount=238810192, factor=5/2
4378186771 339466122110905279 -19 3 42 <A 21194050961
4378186772 339466122110905280 -20 3 4 <B 21194050962
4378186773 339466122110905281 -19 3 0 A> 21194050962
4378186774 339466123304956243 1194050943 3 0 31194050962 A>
4378186775 339466123304956244 1194050944 3 0 31194050962 1 B>
4378186776 339466123304956245 1194050943 3 0 31194050962 1 <A 2
4378186777 339466123304956246 1194050944 3 0 31194050963 B> 2
4378186778 339466123304956247 1194050945 3 0 31194050963 4 B>
4378186779 339466123304956248 1194050944 3 0 31194050963 4 <A 2
4378186780 339466123304956249 1194050943 3 0 31194050963 <B 22
4378186781 339466124499007212 -20 3 0 <B 21194050965
4378186782 339466124499007213 -21 3 <A 21194050966
4378186783 339466124499007214 -20 1 H> 21194050966
4378186783 339466124499007214 -20 1 H> 21194050966 [stop]
Lines: 116
Top steps: 114
Macro steps: 4378186783
Basic steps: 339466124499007214
Tape index: -20
nonzeros: 1194050967
log10(nonzeros): 9.077
log10(steps ): 17.531
Run state: stop
Input to awk program:
gohalt 1
nbs 5
T 2-state 5-symbol #h from T.J. & S. Ligocki
5T 1RB 3RB 3RA 1RH 2LB 2LA 4RA 4RB 2LB 0RA
: 1,194,050,967 339,466,124,499,007,214
L 6
M 201
pref sim
machv Lig25_h just simple
machv Lig25_h-r with repetitions reduced
machv Lig25_h-1 with tape symbol exponents
machv Lig25_h-m as 1-macro machine
machv Lig25_h-a as 1-macro machine with pure additive config-TRs
iam Lig25_h-a
mtype 1
mmtyp 3
r 1
H 1
mac 0
E 2
sympr
HM 1
date Tue Jul 6 22:12:49 CEST 2010
edate Tue Jul 6 22:12:50 CEST 2010
bnspeed 1
Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $
$Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $
$Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $
$Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $
$Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $
$Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $
bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:12:49 CEST 2010