2-state 4-symbol currently best (T.J. & S. Ligocki)

Comment: This TM produces 2050 nonzeros in 3932964 steps.

State on
0
on
1
on
2
on
3
on 0 on 1 on 2 on 3
Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 3RB 3RA 3RA 1LA 3 right B 3 right A 3 right A 1 left A
B 3LB 2RB 2LH 3LA 3 left B 2 right B 2 left H 3 left A
Transition table
The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
Simulation is done as 2-macro machine.
The same TM as 2-macro machine with pure additive config-TRs.

Pushing initial machine.
Pushing macro factor 2.

Steps BasSteps BasTpos  Tape contents
    0        0       0  A>
    1        3      -1  <A 33
    2        4       0  03 B> 33
    3        5      -1  03 <A 33
    4        8       0  32 B> 33
    5        9      -1  32 <A 33
    6       10       0  33 A> 33
    7       11      -1  33 <A 13
    8       13      -3  <A 11 13
    9       14      -2  03 B> 11 13
   10       16       0  03 22 B> 13
   11       21      -1  03 22 <A 11
   12       22       0  03 23 A> 11
   13       24       2  03 23 33 A>
   14       27       1  03 23 33 <A 33
   15       29      -1  03 23 <A 11 33
   16       32       0  03 33 A> 11 33
   17       34       2  03 332 A> 33
   18       35       1  03 332 <A 13
   19       39      -3  03 <A 112 13
   20       42      -2  32 B> 112 13
   21       46       2  32 222 B> 13
   22       51       1  32 222 <A 11
   23       52       2  32 22 23 A> 11
   24       54       4  32 22 23 33 A>
   25       57       3  32 22 23 33 <A 33
   26       59       1  32 22 23 <A 11 33
   27       62       2  32 22 33 A> 11 33
   28       64       4  32 22 332 A> 33
   29       65       3  32 22 332 <A 13
   30       69      -1  32 22 <A 112 13
   31       70       0  32 23 A> 112 13
   32       74       4  32 23 332 A> 13
   33       77       3  32 23 332 <A 11
   34       81      -1  32 23 <A 113
   35       84       0  32 33 A> 113
   36       90       6  32 334 A>
   37       93       5  32 334 <A 33
   38      101      -3  32 <A 114 33
   39      102      -2  33 A> 114 33
   40      110       6  335 A> 33
   41      111       5  335 <A 13
   42      121      -5  <A 115 13
   43      122      -4  03 B> 115 13
   44      132       6  03 225 B> 13
   45      137       5  03 225 <A 11
   46      138       6  03 224 23 A> 11
   47      140       8  03 224 23 33 A>
   48      143       7  03 224 23 33 <A 33
   49      145       5  03 224 23 <A 11 33
   50      148       6  03 224 33 A> 11 33
   51      150       8  03 224 332 A> 33
   52      151       7  03 224 332 <A 13
   53      155       3  03 224 <A 112 13
   54      156       4  03 223 23 A> 112 13
   55      160       8  03 223 23 332 A> 13
   56      163       7  03 223 23 332 <A 11
   57      167       3  03 223 23 <A 113
   58      170       4  03 223 33 A> 113
   59      176      10  03 223 334 A>
   60      179       9  03 223 334 <A 33
   61      187       1  03 223 <A 114 33
   62      188       2  03 222 23 A> 114 33
   63      196      10  03 222 23 334 A> 33
   64      197       9  03 222 23 334 <A 13
   65      205       1  03 222 23 <A 114 13
   66      208       2  03 222 33 A> 114 13
   67      216      10  03 222 335 A> 13
   68      219       9  03 222 335 <A 11
   69      229      -1  03 222 <A 116
   70      230       0  03 22 23 A> 116
   71      242      12  03 22 23 336 A>
   72      245      11  03 22 23 336 <A 33
   73      257      -1  03 22 23 <A 116 33
   74      260       0  03 22 33 A> 116 33
   75      272      12  03 22 337 A> 33
   76      273      11  03 22 337 <A 13
   77      287      -3  03 22 <A 117 13
   78      288      -2  03 23 A> 117 13
   79      302      12  03 23 337 A> 13
   80      305      11  03 23 337 <A 11
   81      319      -3  03 23 <A 118
   82      322      -2  03 33 A> 118
   83      338      14  03 339 A>
   84      341      13  03 339 <A 33
   85      359      -5  03 <A 119 33
   86      362      -4  32 B> 119 33
   87      380      14  32 229 B> 33
   88      381      13  32 229 <A 33
   89      382      14  32 228 23 A> 33
   90      383      13  32 228 23 <A 13
   91      386      14  32 228 33 A> 13
   92      389      13  32 228 33 <A 11
   93      391      11  32 228 <A 112
   94      392      12  32 227 23 A> 112
   95      396      16  32 227 23 332 A>
   96      399      15  32 227 23 332 <A 33
   97      403      11  32 227 23 <A 112 33
   98      406      12  32 227 33 A> 112 33
   99      410      16  32 227 333 A> 33
  100      411      15  32 227 333 <A 13
  101      417       9  32 227 <A 113 13
  102      418      10  32 226 23 A> 113 13
  103      424      16  32 226 23 333 A> 13
  104      427      15  32 226 23 333 <A 11
  105      433       9  32 226 23 <A 114
  106      436      10  32 226 33 A> 114
  107      444      18  32 226 335 A>
  108      447      17  32 226 335 <A 33
  109      457       7  32 226 <A 115 33
  110      458       8  32 225 23 A> 115 33
  111      468      18  32 225 23 335 A> 33
  112      469      17  32 225 23 335 <A 13
  113      479       7  32 225 23 <A 115 13
  114      482       8  32 225 33 A> 115 13
  115      492      18  32 225 336 A> 13
  116      495      17  32 225 336 <A 11
  117      507       5  32 225 <A 117
  118      508       6  32 224 23 A> 117
  119      522      20  32 224 23 337 A>
  120      525      19  32 224 23 337 <A 33
  121      539       5  32 224 23 <A 117 33
  122      542       6  32 224 33 A> 117 33
  123      556      20  32 224 338 A> 33
  124      557      19  32 224 338 <A 13
  125      573       3  32 224 <A 118 13
  126      574       4  32 223 23 A> 118 13
  127      590      20  32 223 23 338 A> 13
  128      593      19  32 223 23 338 <A 11
  129      609       3  32 223 23 <A 119
  130      612       4  32 223 33 A> 119
  131      630      22  32 223 3310 A>
  132      633      21  32 223 3310 <A 33
  133      653       1  32 223 <A 1110 33
  134      654       2  32 222 23 A> 1110 33
  135      674      22  32 222 23 3310 A> 33
  136      675      21  32 222 23 3310 <A 13
  137      695       1  32 222 23 <A 1110 13
  138      698       2  32 222 33 A> 1110 13
  139      718      22  32 222 3311 A> 13
  140      721      21  32 222 3311 <A 11
  141      743      -1  32 222 <A 1112
  142      744       0  32 22 23 A> 1112
  143      768      24  32 22 23 3312 A>
  144      771      23  32 22 23 3312 <A 33
  145      795      -1  32 22 23 <A 1112 33
  146      798       0  32 22 33 A> 1112 33
  147      822      24  32 22 3313 A> 33
  148      823      23  32 22 3313 <A 13
  149      849      -3  32 22 <A 1113 13
  150      850      -2  32 23 A> 1113 13
  151      876      24  32 23 3313 A> 13
  152      879      23  32 23 3313 <A 11
  153      905      -3  32 23 <A 1114
  154      908      -2  32 33 A> 1114
  155      936      26  32 3315 A>
  156      939      25  32 3315 <A 33
  157      969      -5  32 <A 1115 33
  158      970      -4  33 A> 1115 33
  159     1000      26  3316 A> 33
  160     1001      25  3316 <A 13
  161     1033      -7  <A 1116 13
  162     1034      -6  03 B> 1116 13
  163     1066      26  03 2216 B> 13
  164     1071      25  03 2216 <A 11
  165     1072      26  03 2215 23 A> 11
  166     1074      28  03 2215 23 33 A>
  167     1077      27  03 2215 23 33 <A 33
  168     1079      25  03 2215 23 <A 11 33
  169     1082      26  03 2215 33 A> 11 33
  170     1084      28  03 2215 332 A> 33
  171     1085      27  03 2215 332 <A 13
  172     1089      23  03 2215 <A 112 13
  173     1090      24  03 2214 23 A> 112 13
  174     1094      28  03 2214 23 332 A> 13
  175     1097      27  03 2214 23 332 <A 11
  176     1101      23  03 2214 23 <A 113
  177     1104      24  03 2214 33 A> 113
  178     1110      30  03 2214 334 A>
  179     1113      29  03 2214 334 <A 33
  180     1121      21  03 2214 <A 114 33
  181     1122      22  03 2213 23 A> 114 33
  182     1130      30  03 2213 23 334 A> 33
  183     1131      29  03 2213 23 334 <A 13
  184     1139      21  03 2213 23 <A 114 13
  185     1142      22  03 2213 33 A> 114 13
  186     1150      30  03 2213 335 A> 13
  187     1153      29  03 2213 335 <A 11
  188     1163      19  03 2213 <A 116
  189     1164      20  03 2212 23 A> 116
  190     1176      32  03 2212 23 336 A>
  191     1179      31  03 2212 23 336 <A 33
  192     1191      19  03 2212 23 <A 116 33
  193     1194      20  03 2212 33 A> 116 33
  194     1206      32  03 2212 337 A> 33
  195     1207      31  03 2212 337 <A 13
  196     1221      17  03 2212 <A 117 13
  197     1222      18  03 2211 23 A> 117 13
  198     1236      32  03 2211 23 337 A> 13
  199     1239      31  03 2211 23 337 <A 11
  200     1253      17  03 2211 23 <A 118

Lines:       201
Top steps:   200
Macro steps: 200
Basic steps: 1253
Tape index:  17
nonzeros:    41
log10(nonzeros):    1.613
log10(steps   ):    3.098

The same TM just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 2-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Input to awk program:
    gohalt 1
    nbs 4
    T 2-state 4-symbol currently best (T.J. & S. Ligocki)
    : 2050 3932964
    5T  3RB 3RA 3RA 1LA  3LB 2RB 2LH 3LA
    L 10
    M	201
    pref	sim
    machv Lig24_a  	just simple
    machv Lig24_a-r	with repetitions reduced
    machv Lig24_a-1	with tape symbol exponents
    machv Lig24_a-m	as 2-macro machine
    machv Lig24_a-a	as 2-macro machine with pure additive config-TRs
    iam	Lig24_a-m
    mtype	2
    mmtyp	1
    r	1
    H	1
    mac	0
    E	2
    sympr	
    HM	1
    date	Tue Jul  6 22:12:37 CEST 2010
    edate	Tue Jul  6 22:12:38 CEST 2010
    bnspeed	1

Constructed by: $Id: tmJob.awk,v 1.34 2010/05/06 18:26:17 heiner Exp $ $Id: basics.awk,v 1.1 2010/05/06 17:24:17 heiner Exp $ $Id: htSupp.awk,v 1.14 2010/07/06 19:48:32 heiner Exp $ $Id: mmSim.awk,v 1.34 2005/01/09 22:23:28 heiner Exp $ $Id: bignum.awk,v 1.34 2010/05/06 17:58:14 heiner Exp $ $Id: varLI.awk,v 1.11 2005/01/15 21:01:29 heiner Exp $ bignum signature: LEN={S++:9 U++:9 S+:8 U+:8 S*:4 U*:4} DONT: y i o;
Start: Tue Jul 6 22:12:37 CEST 2010
Ready: Tue Jul 6 22:12:38 CEST 2010