Comment: This TM produces 2050 nonzeros in 3932964 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
A | 3RB | 3RA | 3RA | 1LA | 3 | right | B | 3 | right | A | 3 | right | A | 1 | left | A |
B | 3LB | 2RB | 2LH | 3LA | 3 | left | B | 2 | right | B | 2 | left | H | 3 | left | A |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as 2-macro machine. The same TM as 2-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 3 B> 2 0 3 <B 3 3 -1 <A 3 3 4 0 3 B> 3 3 5 -1 3 <A 3 3 6 -2 <A 1 3 3 7 -1 3 B> 1 3 3 8 0 3 2 B> 3 3 9 -1 3 2 <A 3 3 10 0 3 3 A> 3 3 11 -1 3 3 <A 1 3 + 13 -3 <A 13 3 14 -2 3 B> 13 3 + 17 1 3 23 B> 3 18 0 3 23 <A 3 19 1 3 2 2 3 A> 3 20 0 3 2 2 3 <A 1 21 -1 3 2 2 <A 1 1 22 0 3 2 3 A> 1 1 + 24 2 3 2 33 A> 25 3 3 2 34 B> 26 2 3 2 34 <B 3 27 1 3 2 33 <A 3 3 + 30 -2 3 2 <A 13 3 3 31 -1 3 3 A> 13 3 3 + 34 2 35 A> 3 3 35 1 35 <A 1 3 + 40 -4 <A 16 3 41 -3 3 B> 16 3 + 47 3 3 26 B> 3 48 2 3 26 <A 3 49 3 3 25 3 A> 3 50 2 3 25 3 <A 1 51 1 3 25 <A 1 1 52 2 3 24 3 A> 1 1 + 54 4 3 24 33 A> 55 5 3 24 34 B> 56 4 3 24 34 <B 3 57 3 3 24 33 <A 3 3 + 60 0 3 24 <A 13 3 3 61 1 3 23 3 A> 13 3 3 + 64 4 3 23 34 A> 3 3 65 3 3 23 34 <A 1 3 + 69 -1 3 23 <A 15 3 70 0 3 2 2 3 A> 15 3 + 75 5 3 2 2 36 A> 3 76 4 3 2 2 36 <A 1 + 82 -2 3 2 2 <A 17 83 -1 3 2 3 A> 17 + 90 6 3 2 38 A> 91 7 3 2 39 B> 92 6 3 2 39 <B 3 93 5 3 2 38 <A 3 3 + 101 -3 3 2 <A 18 3 3 102 -2 3 3 A> 18 3 3 + 110 6 310 A> 3 3 111 5 310 <A 1 3 + 121 -5 <A 111 3 122 -4 3 B> 111 3 + 133 7 3 211 B> 3 134 6 3 211 <A 3 135 7 3 210 3 A> 3 136 6 3 210 3 <A 1 137 5 3 210 <A 1 1 138 6 3 29 3 A> 1 1 + 140 8 3 29 33 A> 141 9 3 29 34 B> 142 8 3 29 34 <B 3 143 7 3 29 33 <A 3 3 + 146 4 3 29 <A 13 3 3 147 5 3 28 3 A> 13 3 3 + 150 8 3 28 34 A> 3 3 151 7 3 28 34 <A 1 3 + 155 3 3 28 <A 15 3 156 4 3 27 3 A> 15 3 + 161 9 3 27 36 A> 3 162 8 3 27 36 <A 1 + 168 2 3 27 <A 17 169 3 3 26 3 A> 17 + 176 10 3 26 38 A> 177 11 3 26 39 B> 178 10 3 26 39 <B 3 179 9 3 26 38 <A 3 3 + 187 1 3 26 <A 18 3 3 188 2 3 25 3 A> 18 3 3 + 196 10 3 25 39 A> 3 3 197 9 3 25 39 <A 1 3 + 206 0 3 25 <A 110 3 207 1 3 24 3 A> 110 3 + 217 11 3 24 311 A> 3 218 10 3 24 311 <A 1 + 229 -1 3 24 <A 112 230 0 3 23 3 A> 112 + 242 12 3 23 313 A> 243 13 3 23 314 B> 244 12 3 23 314 <B 3 245 11 3 23 313 <A 3 3 + 258 -2 3 23 <A 113 3 3 259 -1 3 2 2 3 A> 113 3 3 + 272 12 3 2 2 314 A> 3 3 273 11 3 2 2 314 <A 1 3 + 287 -3 3 2 2 <A 115 3 288 -2 3 2 3 A> 115 3 + 303 13 3 2 316 A> 3 304 12 3 2 316 <A 1 + 320 -4 3 2 <A 117 321 -3 3 3 A> 117 + 338 14 319 A> 339 15 320 B> 340 14 320 <B 3 341 13 319 <A 3 3 + 360 -6 <A 119 3 3 361 -5 3 B> 119 3 3 + 380 14 3 219 B> 3 3 381 13 3 219 <A 3 3 382 14 3 218 3 A> 3 3 383 13 3 218 3 <A 1 3 384 12 3 218 <A 1 1 3 385 13 3 217 3 A> 1 1 3 + 387 15 3 217 33 A> 3 388 14 3 217 33 <A 1 + 391 11 3 217 <A 14 392 12 3 216 3 A> 14 + 396 16 3 216 35 A> 397 17 3 216 36 B> 398 16 3 216 36 <B 3 399 15 3 216 35 <A 3 3 + 404 10 3 216 <A 15 3 3 405 11 3 215 3 A> 15 3 3 + 410 16 3 215 36 A> 3 3 411 15 3 215 36 <A 1 3 + 417 9 3 215 <A 17 3 418 10 3 214 3 A> 17 3 + 425 17 3 214 38 A> 3 426 16 3 214 38 <A 1 + 434 8 3 214 <A 19 435 9 3 213 3 A> 19 + 444 18 3 213 310 A> 445 19 3 213 311 B> 446 18 3 213 311 <B 3 447 17 3 213 310 <A 3 3 + 457 7 3 213 <A 110 3 3 458 8 3 212 3 A> 110 3 3 + 468 18 3 212 311 A> 3 3 469 17 3 212 311 <A 1 3 + 480 6 3 212 <A 112 3 481 7 3 211 3 A> 112 3 + 493 19 3 211 313 A> 3 494 18 3 211 313 <A 1 + 507 5 3 211 <A 114 508 6 3 210 3 A> 114 + 522 20 3 210 315 A> 523 21 3 210 316 B> 524 20 3 210 316 <B 3 525 19 3 210 315 <A 3 3 + 540 4 3 210 <A 115 3 3 541 5 3 29 3 A> 115 3 3 + 556 20 3 29 316 A> 3 3 557 19 3 29 316 <A 1 3 + 573 3 3 29 <A 117 3 574 4 3 28 3 A> 117 3 + 591 21 3 28 318 A> 3 592 20 3 28 318 <A 1 + 610 2 3 28 <A 119 611 3 3 27 3 A> 119 + 630 22 3 27 320 A> 631 23 3 27 321 B> 632 22 3 27 321 <B 3 633 21 3 27 320 <A 3 3 + 653 1 3 27 <A 120 3 3 654 2 3 26 3 A> 120 3 3 + 674 22 3 26 321 A> 3 3 675 21 3 26 321 <A 1 3 + 696 0 3 26 <A 122 3 697 1 3 25 3 A> 122 3 + 719 23 3 25 323 A> 3 720 22 3 25 323 <A 1 + 743 -1 3 25 <A 124 744 0 3 24 3 A> 124 + 768 24 3 24 325 A> 769 25 3 24 326 B> 770 24 3 24 326 <B 3 771 23 3 24 325 <A 3 3 + 796 -2 3 24 <A 125 3 3 797 -1 3 23 3 A> 125 3 3 + 822 24 3 23 326 A> 3 3 823 23 3 23 326 <A 1 3 + 849 -3 3 23 <A 127 3 850 -2 3 2 2 3 A> 127 3 + 877 25 3 2 2 328 A> 3 878 24 3 2 2 328 <A 1 + 906 -4 3 2 2 <A 129 907 -3 3 2 3 A> 129 + 936 26 3 2 330 A> 937 27 3 2 331 B> 938 26 3 2 331 <B 3 939 25 3 2 330 <A 3 3 + 969 -5 3 2 <A 130 3 3 970 -4 3 3 A> 130 3 3 + 1000 26 332 A> 3 3 After 1000 steps (201 lines): state = A. Produced 34 nonzeros. Tape index 26, scanned [-6 .. 27].
State | Count | Execution count | First in step | ||||||
---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
A | 926 | 20 | 413 | 40 | 453 | 0 | 22 | 9 | 5 |
B | 74 | 14 | 40 | 20 | 1 | 7 | 2 |