Comment: This TM produces 2050 nonzeros in 3932964 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 0 | on 1 | on 2 | on 3 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||
| A | 3RB | 3RA | 3RA | 1LA | 3 | right | B | 3 | right | A | 3 | right | A | 1 | left | A |
| B | 3LB | 2RB | 2LH | 3LA | 3 | left | B | 2 | right | B | 2 | left | H | 3 | left | A |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 2-macro machine.
The same TM as 2-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 3 B>
2 0 3 <B 3
3 -1 <A 3 3
4 0 3 B> 3 3
5 -1 3 <A 3 3
6 -2 <A 1 3 3
7 -1 3 B> 1 3 3
8 0 3 2 B> 3 3
9 -1 3 2 <A 3 3
10 0 3 3 A> 3 3
11 -1 3 3 <A 1 3
+ 13 -3 <A 13 3
14 -2 3 B> 13 3
+ 17 1 3 23 B> 3
18 0 3 23 <A 3
19 1 3 2 2 3 A> 3
20 0 3 2 2 3 <A 1
21 -1 3 2 2 <A 1 1
22 0 3 2 3 A> 1 1
+ 24 2 3 2 33 A>
25 3 3 2 34 B>
26 2 3 2 34 <B 3
27 1 3 2 33 <A 3 3
+ 30 -2 3 2 <A 13 3 3
31 -1 3 3 A> 13 3 3
+ 34 2 35 A> 3 3
35 1 35 <A 1 3
+ 40 -4 <A 16 3
41 -3 3 B> 16 3
+ 47 3 3 26 B> 3
48 2 3 26 <A 3
49 3 3 25 3 A> 3
50 2 3 25 3 <A 1
51 1 3 25 <A 1 1
52 2 3 24 3 A> 1 1
+ 54 4 3 24 33 A>
55 5 3 24 34 B>
56 4 3 24 34 <B 3
57 3 3 24 33 <A 3 3
+ 60 0 3 24 <A 13 3 3
61 1 3 23 3 A> 13 3 3
+ 64 4 3 23 34 A> 3 3
65 3 3 23 34 <A 1 3
+ 69 -1 3 23 <A 15 3
70 0 3 2 2 3 A> 15 3
+ 75 5 3 2 2 36 A> 3
76 4 3 2 2 36 <A 1
+ 82 -2 3 2 2 <A 17
83 -1 3 2 3 A> 17
+ 90 6 3 2 38 A>
91 7 3 2 39 B>
92 6 3 2 39 <B 3
93 5 3 2 38 <A 3 3
+ 101 -3 3 2 <A 18 3 3
102 -2 3 3 A> 18 3 3
+ 110 6 310 A> 3 3
111 5 310 <A 1 3
+ 121 -5 <A 111 3
122 -4 3 B> 111 3
+ 133 7 3 211 B> 3
134 6 3 211 <A 3
135 7 3 210 3 A> 3
136 6 3 210 3 <A 1
137 5 3 210 <A 1 1
138 6 3 29 3 A> 1 1
+ 140 8 3 29 33 A>
141 9 3 29 34 B>
142 8 3 29 34 <B 3
143 7 3 29 33 <A 3 3
+ 146 4 3 29 <A 13 3 3
147 5 3 28 3 A> 13 3 3
+ 150 8 3 28 34 A> 3 3
151 7 3 28 34 <A 1 3
+ 155 3 3 28 <A 15 3
156 4 3 27 3 A> 15 3
+ 161 9 3 27 36 A> 3
162 8 3 27 36 <A 1
+ 168 2 3 27 <A 17
169 3 3 26 3 A> 17
+ 176 10 3 26 38 A>
177 11 3 26 39 B>
178 10 3 26 39 <B 3
179 9 3 26 38 <A 3 3
+ 187 1 3 26 <A 18 3 3
188 2 3 25 3 A> 18 3 3
+ 196 10 3 25 39 A> 3 3
197 9 3 25 39 <A 1 3
+ 206 0 3 25 <A 110 3
207 1 3 24 3 A> 110 3
+ 217 11 3 24 311 A> 3
218 10 3 24 311 <A 1
+ 229 -1 3 24 <A 112
230 0 3 23 3 A> 112
+ 242 12 3 23 313 A>
243 13 3 23 314 B>
244 12 3 23 314 <B 3
245 11 3 23 313 <A 3 3
+ 258 -2 3 23 <A 113 3 3
259 -1 3 2 2 3 A> 113 3 3
+ 272 12 3 2 2 314 A> 3 3
273 11 3 2 2 314 <A 1 3
+ 287 -3 3 2 2 <A 115 3
288 -2 3 2 3 A> 115 3
+ 303 13 3 2 316 A> 3
304 12 3 2 316 <A 1
+ 320 -4 3 2 <A 117
321 -3 3 3 A> 117
+ 338 14 319 A>
339 15 320 B>
340 14 320 <B 3
341 13 319 <A 3 3
+ 360 -6 <A 119 3 3
361 -5 3 B> 119 3 3
+ 380 14 3 219 B> 3 3
381 13 3 219 <A 3 3
382 14 3 218 3 A> 3 3
383 13 3 218 3 <A 1 3
384 12 3 218 <A 1 1 3
385 13 3 217 3 A> 1 1 3
+ 387 15 3 217 33 A> 3
388 14 3 217 33 <A 1
+ 391 11 3 217 <A 14
392 12 3 216 3 A> 14
+ 396 16 3 216 35 A>
397 17 3 216 36 B>
398 16 3 216 36 <B 3
399 15 3 216 35 <A 3 3
+ 404 10 3 216 <A 15 3 3
405 11 3 215 3 A> 15 3 3
+ 410 16 3 215 36 A> 3 3
411 15 3 215 36 <A 1 3
+ 417 9 3 215 <A 17 3
418 10 3 214 3 A> 17 3
+ 425 17 3 214 38 A> 3
426 16 3 214 38 <A 1
+ 434 8 3 214 <A 19
435 9 3 213 3 A> 19
+ 444 18 3 213 310 A>
445 19 3 213 311 B>
446 18 3 213 311 <B 3
447 17 3 213 310 <A 3 3
+ 457 7 3 213 <A 110 3 3
458 8 3 212 3 A> 110 3 3
+ 468 18 3 212 311 A> 3 3
469 17 3 212 311 <A 1 3
+ 480 6 3 212 <A 112 3
481 7 3 211 3 A> 112 3
+ 493 19 3 211 313 A> 3
494 18 3 211 313 <A 1
+ 507 5 3 211 <A 114
508 6 3 210 3 A> 114
+ 522 20 3 210 315 A>
523 21 3 210 316 B>
524 20 3 210 316 <B 3
525 19 3 210 315 <A 3 3
+ 540 4 3 210 <A 115 3 3
541 5 3 29 3 A> 115 3 3
+ 556 20 3 29 316 A> 3 3
557 19 3 29 316 <A 1 3
+ 573 3 3 29 <A 117 3
574 4 3 28 3 A> 117 3
+ 591 21 3 28 318 A> 3
592 20 3 28 318 <A 1
+ 610 2 3 28 <A 119
611 3 3 27 3 A> 119
+ 630 22 3 27 320 A>
631 23 3 27 321 B>
632 22 3 27 321 <B 3
633 21 3 27 320 <A 3 3
+ 653 1 3 27 <A 120 3 3
654 2 3 26 3 A> 120 3 3
+ 674 22 3 26 321 A> 3 3
675 21 3 26 321 <A 1 3
+ 696 0 3 26 <A 122 3
697 1 3 25 3 A> 122 3
+ 719 23 3 25 323 A> 3
720 22 3 25 323 <A 1
+ 743 -1 3 25 <A 124
744 0 3 24 3 A> 124
+ 768 24 3 24 325 A>
769 25 3 24 326 B>
770 24 3 24 326 <B 3
771 23 3 24 325 <A 3 3
+ 796 -2 3 24 <A 125 3 3
797 -1 3 23 3 A> 125 3 3
+ 822 24 3 23 326 A> 3 3
823 23 3 23 326 <A 1 3
+ 849 -3 3 23 <A 127 3
850 -2 3 2 2 3 A> 127 3
+ 877 25 3 2 2 328 A> 3
878 24 3 2 2 328 <A 1
+ 906 -4 3 2 2 <A 129
907 -3 3 2 3 A> 129
+ 936 26 3 2 330 A>
937 27 3 2 331 B>
938 26 3 2 331 <B 3
939 25 3 2 330 <A 3 3
+ 969 -5 3 2 <A 130 3 3
970 -4 3 3 A> 130 3 3
+ 1000 26 332 A> 3 3
After 1000 steps (201 lines): state = A.
Produced 34 nonzeros.
Tape index 26, scanned [-6 .. 27].
| State | Count | Execution count | First in step | ||||||
|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 0 | on 1 | on 2 | on 3 | ||
| A | 926 | 20 | 413 | 40 | 453 | 0 | 22 | 9 | 5 |
| B | 74 | 14 | 40 | 20 | 1 | 7 | 2 | ||