2-state 4-symbol currently best (T.J. & S. Ligocki)

Comment: This TM produces 2050 nonzeros in 3932964 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on 0 on 1 on 2 on 3
Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A 3RB 3RA 3RA 1LA 3 right B 3 right A 3 right A 1 left A
B 3LB 2RB 2LH 3LA 3 left B 2 right B 2 left H 3 left A
Transition table
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as 2-macro machine.
The same TM as 2-macro machine with pure additive config-TRs.

  Step  Tpos  Tape contents
     0     0  <A
     1     1  3 B>
     2     0  3 <B 3
     3    -1  <A 3 3
     4     0  3 B> 3 3
     5    -1  3 <A 3 3
     6    -2  <A 1 3 3
     7    -1  3 B> 1 3 3
     8     0  3 2 B> 3 3
     9    -1  3 2 <A 3 3
    10     0  3 3 A> 3 3
    11    -1  3 3 <A 1 3
+   13    -3  <A 13 3
    14    -2  3 B> 13 3
+   17     1  3 23 B> 3
    18     0  3 23 <A 3
    19     1  3 2 2 3 A> 3
    20     0  3 2 2 3 <A 1
    21    -1  3 2 2 <A 1 1
    22     0  3 2 3 A> 1 1
+   24     2  3 2 33 A>
    25     3  3 2 34 B>
    26     2  3 2 34 <B 3
    27     1  3 2 33 <A 3 3
+   30    -2  3 2 <A 13 3 3
    31    -1  3 3 A> 13 3 3
+   34     2  35 A> 3 3
    35     1  35 <A 1 3
+   40    -4  <A 16 3
    41    -3  3 B> 16 3
+   47     3  3 26 B> 3
    48     2  3 26 <A 3
    49     3  3 25 3 A> 3
    50     2  3 25 3 <A 1
    51     1  3 25 <A 1 1
    52     2  3 24 3 A> 1 1
+   54     4  3 24 33 A>
    55     5  3 24 34 B>
    56     4  3 24 34 <B 3
    57     3  3 24 33 <A 3 3
+   60     0  3 24 <A 13 3 3
    61     1  3 23 3 A> 13 3 3
+   64     4  3 23 34 A> 3 3
    65     3  3 23 34 <A 1 3
+   69    -1  3 23 <A 15 3
    70     0  3 2 2 3 A> 15 3
+   75     5  3 2 2 36 A> 3
    76     4  3 2 2 36 <A 1
+   82    -2  3 2 2 <A 17
    83    -1  3 2 3 A> 17
+   90     6  3 2 38 A>
    91     7  3 2 39 B>
    92     6  3 2 39 <B 3
    93     5  3 2 38 <A 3 3
+  101    -3  3 2 <A 18 3 3
   102    -2  3 3 A> 18 3 3
+  110     6  310 A> 3 3
   111     5  310 <A 1 3
+  121    -5  <A 111 3
   122    -4  3 B> 111 3
+  133     7  3 211 B> 3
   134     6  3 211 <A 3
   135     7  3 210 3 A> 3
   136     6  3 210 3 <A 1
   137     5  3 210 <A 1 1
   138     6  3 29 3 A> 1 1
+  140     8  3 29 33 A>
   141     9  3 29 34 B>
   142     8  3 29 34 <B 3
   143     7  3 29 33 <A 3 3
+  146     4  3 29 <A 13 3 3
   147     5  3 28 3 A> 13 3 3
+  150     8  3 28 34 A> 3 3
   151     7  3 28 34 <A 1 3
+  155     3  3 28 <A 15 3
   156     4  3 27 3 A> 15 3
+  161     9  3 27 36 A> 3
   162     8  3 27 36 <A 1
+  168     2  3 27 <A 17
   169     3  3 26 3 A> 17
+  176    10  3 26 38 A>
   177    11  3 26 39 B>
   178    10  3 26 39 <B 3
   179     9  3 26 38 <A 3 3
+  187     1  3 26 <A 18 3 3
   188     2  3 25 3 A> 18 3 3
+  196    10  3 25 39 A> 3 3
   197     9  3 25 39 <A 1 3
+  206     0  3 25 <A 110 3
   207     1  3 24 3 A> 110 3
+  217    11  3 24 311 A> 3
   218    10  3 24 311 <A 1
+  229    -1  3 24 <A 112
   230     0  3 23 3 A> 112
+  242    12  3 23 313 A>
   243    13  3 23 314 B>
   244    12  3 23 314 <B 3
   245    11  3 23 313 <A 3 3
+  258    -2  3 23 <A 113 3 3
   259    -1  3 2 2 3 A> 113 3 3
+  272    12  3 2 2 314 A> 3 3
   273    11  3 2 2 314 <A 1 3
+  287    -3  3 2 2 <A 115 3
   288    -2  3 2 3 A> 115 3
+  303    13  3 2 316 A> 3
   304    12  3 2 316 <A 1
+  320    -4  3 2 <A 117
   321    -3  3 3 A> 117
+  338    14  319 A>
   339    15  320 B>
   340    14  320 <B 3
   341    13  319 <A 3 3
+  360    -6  <A 119 3 3
   361    -5  3 B> 119 3 3
+  380    14  3 219 B> 3 3
   381    13  3 219 <A 3 3
   382    14  3 218 3 A> 3 3
   383    13  3 218 3 <A 1 3
   384    12  3 218 <A 1 1 3
   385    13  3 217 3 A> 1 1 3
+  387    15  3 217 33 A> 3
   388    14  3 217 33 <A 1
+  391    11  3 217 <A 14
   392    12  3 216 3 A> 14
+  396    16  3 216 35 A>
   397    17  3 216 36 B>
   398    16  3 216 36 <B 3
   399    15  3 216 35 <A 3 3
+  404    10  3 216 <A 15 3 3
   405    11  3 215 3 A> 15 3 3
+  410    16  3 215 36 A> 3 3
   411    15  3 215 36 <A 1 3
+  417     9  3 215 <A 17 3
   418    10  3 214 3 A> 17 3
+  425    17  3 214 38 A> 3
   426    16  3 214 38 <A 1
+  434     8  3 214 <A 19
   435     9  3 213 3 A> 19
+  444    18  3 213 310 A>
   445    19  3 213 311 B>
   446    18  3 213 311 <B 3
   447    17  3 213 310 <A 3 3
+  457     7  3 213 <A 110 3 3
   458     8  3 212 3 A> 110 3 3
+  468    18  3 212 311 A> 3 3
   469    17  3 212 311 <A 1 3
+  480     6  3 212 <A 112 3
   481     7  3 211 3 A> 112 3
+  493    19  3 211 313 A> 3
   494    18  3 211 313 <A 1
+  507     5  3 211 <A 114
   508     6  3 210 3 A> 114
+  522    20  3 210 315 A>
   523    21  3 210 316 B>
   524    20  3 210 316 <B 3
   525    19  3 210 315 <A 3 3
+  540     4  3 210 <A 115 3 3
   541     5  3 29 3 A> 115 3 3
+  556    20  3 29 316 A> 3 3
   557    19  3 29 316 <A 1 3
+  573     3  3 29 <A 117 3
   574     4  3 28 3 A> 117 3
+  591    21  3 28 318 A> 3
   592    20  3 28 318 <A 1
+  610     2  3 28 <A 119
   611     3  3 27 3 A> 119
+  630    22  3 27 320 A>
   631    23  3 27 321 B>
   632    22  3 27 321 <B 3
   633    21  3 27 320 <A 3 3
+  653     1  3 27 <A 120 3 3
   654     2  3 26 3 A> 120 3 3
+  674    22  3 26 321 A> 3 3
   675    21  3 26 321 <A 1 3
+  696     0  3 26 <A 122 3
   697     1  3 25 3 A> 122 3
+  719    23  3 25 323 A> 3
   720    22  3 25 323 <A 1
+  743    -1  3 25 <A 124
   744     0  3 24 3 A> 124
+  768    24  3 24 325 A>
   769    25  3 24 326 B>
   770    24  3 24 326 <B 3
   771    23  3 24 325 <A 3 3
+  796    -2  3 24 <A 125 3 3
   797    -1  3 23 3 A> 125 3 3
+  822    24  3 23 326 A> 3 3
   823    23  3 23 326 <A 1 3
+  849    -3  3 23 <A 127 3
   850    -2  3 2 2 3 A> 127 3
+  877    25  3 2 2 328 A> 3
   878    24  3 2 2 328 <A 1
+  906    -4  3 2 2 <A 129
   907    -3  3 2 3 A> 129
+  936    26  3 2 330 A>
   937    27  3 2 331 B>
   938    26  3 2 331 <B 3
   939    25  3 2 330 <A 3 3
+  969    -5  3 2 <A 130 3 3
   970    -4  3 3 A> 130 3 3
+ 1000    26  332 A> 3 3

After 1000 steps (201 lines): state = A.
Produced     34 nonzeros.
Tape index 26, scanned [-6 .. 27].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 0 on 1 on 2 on 3
A 926 20 413 40 453 0 22 9 5
B 74 14 40   20 1 7   2
Execution statistics

The same TM just simple.
The same TM with repetitions reduced.
The same TM as 2-macro machine.
The same TM as 2-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:12:37 CEST 2010