Comment: This TM produces 1'525'688 nonzeros in 987'522'842'126 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | |||||||
| A | B1R | A2L | A1R | 1 | right | B | 2 | left | A | 1 | right | A |
| B | C1R | B2R | C0R | 1 | right | C | 2 | right | B | 0 | right | C |
| C | A1L | Z1R | A1L | 1 | left | A | 1 | right | Z | 1 | left | A |
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as bck-2-macro machine.
The same TM as bck-2-macro machine with pure additive config-TRs.
Step Tpos St Tape contents
0 0 A . . . 0
1 1 B . . . 10
2 2 C . . . 110
3 1 A . . . 111
4 0 A . . . 121
5 -1 A . . .0221
6 0 B . . .1221
7 1 C . . .1021
8 0 A . . .1011
9 1 B . . .1111
10 2 B . . .1121
11 3 B . . .11220
12 4 C . . .112210
13 3 A . . .112211
14 2 A . . .112221
15 3 A . . .112121
16 4 A . . .112111
17 3 A . . .112112
18 2 A . . .112122
19 1 A . . .112222
20 2 A . . .111222
21 3 A . . .111122
22 4 A . . .111112
23 5 A . . .1111110
24 6 B . . .11111110
25 7 C . . .111111110
26 6 A . . .111111111
27 5 A . . .111111121
28 4 A . . .111111221
29 3 A . . .111112221
30 2 A . . .111122221
31 1 A . . .111222221
32 0 A . . .112222221
33 -1 A . . .122222221
34 -2 A . . 0222222221
35 -1 B . . 1222222221
36 0 C . . 1022222221
37 -1 A . . 1012222221
38 0 B . . 1112222221
39 1 B . . 1122222221
40 2 C . . 1120222221
41 1 A . . 1120122221
42 2 B . . 1121122221
43 3 B . . 1121222221
44 4 C . . 1121202221
45 3 A . . 1121201221
46 4 B . . 1121211221
47 5 B . . 1121212221
48 6 C . . 1121212021
49 5 A . . 1121212011
50 6 B . . 1121212111
51 7 B . . 1121212121
52 8 B . . 11212121220
53 9 C . . 112121212210
54 8 A . . 112121212211
55 7 A . . 112121212221
56 8 A . . 112121212121
57 9 A . . 112121212111
58 8 A . . 112121212112
59 7 A . . 112121212122
60 6 A . . 112121212222
61 7 A . . 112121211222
62 8 A . . 112121211122
63 9 A . . 112121211112
64 10 A . . 1121212111110
65 11 B . . 11212121111110
66 12 C . . 112121211111110
67 11 A . . 112121211111111
68 10 A . . 112121211111121
69 9 A . . 112121211111221
70 8 A . . 112121211112221
71 7 A . . 112121211122221
72 6 A . . 112121211222221
73 5 A . . 112121212222221
74 4 A . . 112121222222221
75 5 A . . 112121122222221
76 6 A . . 112121112222221
77 7 A . . 112121111222221
78 8 A . . 112121111122221
79 9 A . . 112121111112221
80 10 A . . 112121111111221
81 11 A . . 112121111111121
82 12 A . . 112121111111111
83 11 A . . 112121111111112
84 10 A . . 112121111111122
85 9 A . . 112121111111222
86 8 A . . 112121111112222
87 7 A . . 112121111122222
88 6 A . . 112121111222222
89 5 A . . 112121112222222
90 4 A . . 112121122222222
91 3 A . . 112121222222222
92 2 A . . 112122222222222
93 3 A . . 112112222222222
94 4 A . . 112111222222222
95 5 A . . 112111122222222
96 6 A . . 112111112222222
97 7 A . . 112111111222222
98 8 A . . 112111111122222
99 9 A . . 112111111112222
100 10 A . . 112111111111222
101 11 A . . 112111111111122
102 12 A . . 112111111111112
103 13 A . . 1121111111111110
104 14 B . . 11211111111111110
105 15 C . . 112111111111111110
106 14 A . . 112111111111111111
107 13 A . . 112111111111111121
108 12 A . . 112111111111111221
109 11 A . . 112111111111112221
110 10 A . . 112111111111122221
111 9 A . . 112111111111222221
112 8 A . . 112111111112222221
113 7 A . . 112111111122222221
114 6 A . . 112111111222222221
115 5 A . . 112111112222222221
116 4 A . . 112111122222222221
117 3 A . . 112111222222222221
118 2 A . . 112112222222222221
119 1 A . . 112122222222222221
120 0 A . . 112222222222222221
121 1 A . . 111222222222222221
122 2 A . . 111122222222222221
123 3 A . . 111112222222222221
124 4 A . . 111111222222222221
125 5 A . . 111111122222222221
126 6 A . . 111111112222222221
127 7 A . . 111111111222222221
128 8 A . . 111111111122222221
129 9 A . . 111111111112222221
130 10 A . . 111111111111222221
131 11 A . . 111111111111122221
132 12 A . . 111111111111112221
133 13 A . . 111111111111111221
134 14 A . . 111111111111111121
135 15 A . . 111111111111111111
136 14 A . . 111111111111111112
137 13 A . . 111111111111111122
138 12 A . . 111111111111111222
139 11 A . . 111111111111112222
140 10 A . . 111111111111122222
141 9 A . . 111111111111222222
142 8 A . . 111111111112222222
143 7 A . . 111111111122222222
144 6 A . . 111111111222222222
145 5 A . . 111111112222222222
146 4 A . . 111111122222222222
147 3 A . . 111111222222222222
148 2 A . . 111112222222222222
149 1 A . . 111122222222222222
150 0 A . . 111222222222222222
151 -1 A . . 112222222222222222
152 -2 A . . 122222222222222222
153 -3 A . .0222222222222222222
154 -2 B . .1222222222222222222
155 -1 C . .1022222222222222222
156 -2 A . .1012222222222222222
157 -1 B . .1112222222222222222
158 0 B . .1122222222222222222
159 1 C . .1120222222222222222
160 0 A . .1120122222222222222
161 1 B . .1121122222222222222
162 2 B . .1121222222222222222
163 3 C . .1121202222222222222
164 2 A . .1121201222222222222
165 3 B . .1121211222222222222
166 4 B . .1121212222222222222
167 5 C . .1121212022222222222
168 4 A . .1121212012222222222
169 5 B . .1121212112222222222
170 6 B . .1121212122222222222
171 7 C . .1121212120222222222
172 6 A . .1121212120122222222
173 7 B . .1121212121122222222
174 8 B . .1121212121222222222
175 9 C . .1121212121202222222
176 8 A . .1121212121201222222
177 9 B . .1121212121211222222
178 10 B . .1121212121212222222
179 11 C . .1121212121212022222
180 10 A . .1121212121212012222
181 11 B . .1121212121212112222
182 12 B . .1121212121212122222
183 13 C . .1121212121212120222
184 12 A . .1121212121212120122
185 13 B . .1121212121212121122
186 14 B . .1121212121212121222
187 15 C . .1121212121212121202
188 14 A . .1121212121212121201
189 15 B . .1121212121212121211
190 16 B . .11212121212121212120
191 17 C . .112121212121212121210
192 16 A . .112121212121212121211
193 15 A . .112121212121212121221
194 16 A . .112121212121212121121
195 17 A . .112121212121212121111
196 16 A . .112121212121212121112
197 15 A . .112121212121212121122
198 14 A . .112121212121212121222
199 13 A . .112121212121212122222
200 14 A . .112121212121212112222
After 200 steps (201 lines): state = A.
Produced 21 nonzeros.
Tape index 14, scanned [-3 .. 17].
| State | Count | Execution count | First in step | ||||
|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
| A | 142 | 21 | 72 | 49 | 0 | 3 | 14 |
| B | 37 | 7 | 16 | 14 | 1 | 9 | 6 |
| C | 21 | 7 | 14 | 2 | 7 | ||