3-state 3-symbol TM #d of G. Lafitte & C. Papazian

Comment: This TM produces 1'525'688 nonzeros in 987'522'842'126 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on 0 on 1 on 2
Print Move Goto Print Move Goto Print Move Goto
A B1R A2L A1R 1 right B 2 left A 1 right A
B C1R B2R C0R 1 right C 2 right B 0 right C
C A1L Z1R A1L 1 left A 1 right Z 1 left A
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as bck-2-macro machine.
The same TM as bck-2-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . . 0
     1    1 B . . . 10
     2    2 C . . . 110
     3    1 A . . . 111
     4    0 A . . . 121
     5   -1 A . . .0221
     6    0 B . . .1221
     7    1 C . . .1021
     8    0 A . . .1011
     9    1 B . . .1111
    10    2 B . . .1121
    11    3 B . . .11220
    12    4 C . . .112210
    13    3 A . . .112211
    14    2 A . . .112221
    15    3 A . . .112121
    16    4 A . . .112111
    17    3 A . . .112112
    18    2 A . . .112122
    19    1 A . . .112222
    20    2 A . . .111222
    21    3 A . . .111122
    22    4 A . . .111112
    23    5 A . . .1111110
    24    6 B . . .11111110
    25    7 C . . .111111110
    26    6 A . . .111111111
    27    5 A . . .111111121
    28    4 A . . .111111221
    29    3 A . . .111112221
    30    2 A . . .111122221
    31    1 A . . .111222221
    32    0 A . . .112222221
    33   -1 A . . .122222221
    34   -2 A . . 0222222221
    35   -1 B . . 1222222221
    36    0 C . . 1022222221
    37   -1 A . . 1012222221
    38    0 B . . 1112222221
    39    1 B . . 1122222221
    40    2 C . . 1120222221
    41    1 A . . 1120122221
    42    2 B . . 1121122221
    43    3 B . . 1121222221
    44    4 C . . 1121202221
    45    3 A . . 1121201221
    46    4 B . . 1121211221
    47    5 B . . 1121212221
    48    6 C . . 1121212021
    49    5 A . . 1121212011
    50    6 B . . 1121212111
    51    7 B . . 1121212121
    52    8 B . . 11212121220
    53    9 C . . 112121212210
    54    8 A . . 112121212211
    55    7 A . . 112121212221
    56    8 A . . 112121212121
    57    9 A . . 112121212111
    58    8 A . . 112121212112
    59    7 A . . 112121212122
    60    6 A . . 112121212222
    61    7 A . . 112121211222
    62    8 A . . 112121211122
    63    9 A . . 112121211112
    64   10 A . . 1121212111110
    65   11 B . . 11212121111110
    66   12 C . . 112121211111110
    67   11 A . . 112121211111111
    68   10 A . . 112121211111121
    69    9 A . . 112121211111221
    70    8 A . . 112121211112221
    71    7 A . . 112121211122221
    72    6 A . . 112121211222221
    73    5 A . . 112121212222221
    74    4 A . . 112121222222221
    75    5 A . . 112121122222221
    76    6 A . . 112121112222221
    77    7 A . . 112121111222221
    78    8 A . . 112121111122221
    79    9 A . . 112121111112221
    80   10 A . . 112121111111221
    81   11 A . . 112121111111121
    82   12 A . . 112121111111111
    83   11 A . . 112121111111112
    84   10 A . . 112121111111122
    85    9 A . . 112121111111222
    86    8 A . . 112121111112222
    87    7 A . . 112121111122222
    88    6 A . . 112121111222222
    89    5 A . . 112121112222222
    90    4 A . . 112121122222222
    91    3 A . . 112121222222222
    92    2 A . . 112122222222222
    93    3 A . . 112112222222222
    94    4 A . . 112111222222222
    95    5 A . . 112111122222222
    96    6 A . . 112111112222222
    97    7 A . . 112111111222222
    98    8 A . . 112111111122222
    99    9 A . . 112111111112222
   100   10 A . . 112111111111222
   101   11 A . . 112111111111122
   102   12 A . . 112111111111112
   103   13 A . . 1121111111111110
   104   14 B . . 11211111111111110
   105   15 C . . 112111111111111110
   106   14 A . . 112111111111111111
   107   13 A . . 112111111111111121
   108   12 A . . 112111111111111221
   109   11 A . . 112111111111112221
   110   10 A . . 112111111111122221
   111    9 A . . 112111111111222221
   112    8 A . . 112111111112222221
   113    7 A . . 112111111122222221
   114    6 A . . 112111111222222221
   115    5 A . . 112111112222222221
   116    4 A . . 112111122222222221
   117    3 A . . 112111222222222221
   118    2 A . . 112112222222222221
   119    1 A . . 112122222222222221
   120    0 A . . 112222222222222221
   121    1 A . . 111222222222222221
   122    2 A . . 111122222222222221
   123    3 A . . 111112222222222221
   124    4 A . . 111111222222222221
   125    5 A . . 111111122222222221
   126    6 A . . 111111112222222221
   127    7 A . . 111111111222222221
   128    8 A . . 111111111122222221
   129    9 A . . 111111111112222221
   130   10 A . . 111111111111222221
   131   11 A . . 111111111111122221
   132   12 A . . 111111111111112221
   133   13 A . . 111111111111111221
   134   14 A . . 111111111111111121
   135   15 A . . 111111111111111111
   136   14 A . . 111111111111111112
   137   13 A . . 111111111111111122
   138   12 A . . 111111111111111222
   139   11 A . . 111111111111112222
   140   10 A . . 111111111111122222
   141    9 A . . 111111111111222222
   142    8 A . . 111111111112222222
   143    7 A . . 111111111122222222
   144    6 A . . 111111111222222222
   145    5 A . . 111111112222222222
   146    4 A . . 111111122222222222
   147    3 A . . 111111222222222222
   148    2 A . . 111112222222222222
   149    1 A . . 111122222222222222
   150    0 A . . 111222222222222222
   151   -1 A . . 112222222222222222
   152   -2 A . . 122222222222222222
   153   -3 A . .0222222222222222222
   154   -2 B . .1222222222222222222
   155   -1 C . .1022222222222222222
   156   -2 A . .1012222222222222222
   157   -1 B . .1112222222222222222
   158    0 B . .1122222222222222222
   159    1 C . .1120222222222222222
   160    0 A . .1120122222222222222
   161    1 B . .1121122222222222222
   162    2 B . .1121222222222222222
   163    3 C . .1121202222222222222
   164    2 A . .1121201222222222222
   165    3 B . .1121211222222222222
   166    4 B . .1121212222222222222
   167    5 C . .1121212022222222222
   168    4 A . .1121212012222222222
   169    5 B . .1121212112222222222
   170    6 B . .1121212122222222222
   171    7 C . .1121212120222222222
   172    6 A . .1121212120122222222
   173    7 B . .1121212121122222222
   174    8 B . .1121212121222222222
   175    9 C . .1121212121202222222
   176    8 A . .1121212121201222222
   177    9 B . .1121212121211222222
   178   10 B . .1121212121212222222
   179   11 C . .1121212121212022222
   180   10 A . .1121212121212012222
   181   11 B . .1121212121212112222
   182   12 B . .1121212121212122222
   183   13 C . .1121212121212120222
   184   12 A . .1121212121212120122
   185   13 B . .1121212121212121122
   186   14 B . .1121212121212121222
   187   15 C . .1121212121212121202
   188   14 A . .1121212121212121201
   189   15 B . .1121212121212121211
   190   16 B . .11212121212121212120
   191   17 C . .112121212121212121210
   192   16 A . .112121212121212121211
   193   15 A . .112121212121212121221
   194   16 A . .112121212121212121121
   195   17 A . .112121212121212121111
   196   16 A . .112121212121212121112
   197   15 A . .112121212121212121122
   198   14 A . .112121212121212121222
   199   13 A . .112121212121212122222
   200   14 A . .112121212121212112222

After 200 steps (201 lines): state = A.
Produced     21 nonzeros.
Tape index 14, scanned [-3 .. 17].
State Count Execution count First in step
on 0 on 1 on 2 on 0 on 1 on 2
A 142 21 72 49 0 3 14
B 37 7 16 14 1 9 6
C 21 7   14 2   7
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as bck-2-macro machine.
The same TM as bck-2-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:11:49 CEST 2010