Comment: This TM produces 1'525'688 nonzeros in 987'522'842'126 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | |||||||
A | B1R | A2L | A1R | 1 | right | B | 2 | left | A | 1 | right | A |
B | C1R | B2R | C0R | 1 | right | C | 2 | right | B | 0 | right | C |
C | A1L | Z1R | A1L | 1 | left | A | 1 | right | Z | 1 | left | A |
Simulation is done just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. The same TM as bck-2-macro machine. The same TM as bck-2-macro machine with pure additive config-TRs. Step Tpos St Tape contents 0 0 A . . . 0 1 1 B . . . 10 2 2 C . . . 110 3 1 A . . . 111 4 0 A . . . 121 5 -1 A . . .0221 6 0 B . . .1221 7 1 C . . .1021 8 0 A . . .1011 9 1 B . . .1111 10 2 B . . .1121 11 3 B . . .11220 12 4 C . . .112210 13 3 A . . .112211 14 2 A . . .112221 15 3 A . . .112121 16 4 A . . .112111 17 3 A . . .112112 18 2 A . . .112122 19 1 A . . .112222 20 2 A . . .111222 21 3 A . . .111122 22 4 A . . .111112 23 5 A . . .1111110 24 6 B . . .11111110 25 7 C . . .111111110 26 6 A . . .111111111 27 5 A . . .111111121 28 4 A . . .111111221 29 3 A . . .111112221 30 2 A . . .111122221 31 1 A . . .111222221 32 0 A . . .112222221 33 -1 A . . .122222221 34 -2 A . . 0222222221 35 -1 B . . 1222222221 36 0 C . . 1022222221 37 -1 A . . 1012222221 38 0 B . . 1112222221 39 1 B . . 1122222221 40 2 C . . 1120222221 41 1 A . . 1120122221 42 2 B . . 1121122221 43 3 B . . 1121222221 44 4 C . . 1121202221 45 3 A . . 1121201221 46 4 B . . 1121211221 47 5 B . . 1121212221 48 6 C . . 1121212021 49 5 A . . 1121212011 50 6 B . . 1121212111 51 7 B . . 1121212121 52 8 B . . 11212121220 53 9 C . . 112121212210 54 8 A . . 112121212211 55 7 A . . 112121212221 56 8 A . . 112121212121 57 9 A . . 112121212111 58 8 A . . 112121212112 59 7 A . . 112121212122 60 6 A . . 112121212222 61 7 A . . 112121211222 62 8 A . . 112121211122 63 9 A . . 112121211112 64 10 A . . 1121212111110 65 11 B . . 11212121111110 66 12 C . . 112121211111110 67 11 A . . 112121211111111 68 10 A . . 112121211111121 69 9 A . . 112121211111221 70 8 A . . 112121211112221 71 7 A . . 112121211122221 72 6 A . . 112121211222221 73 5 A . . 112121212222221 74 4 A . . 112121222222221 75 5 A . . 112121122222221 76 6 A . . 112121112222221 77 7 A . . 112121111222221 78 8 A . . 112121111122221 79 9 A . . 112121111112221 80 10 A . . 112121111111221 81 11 A . . 112121111111121 82 12 A . . 112121111111111 83 11 A . . 112121111111112 84 10 A . . 112121111111122 85 9 A . . 112121111111222 86 8 A . . 112121111112222 87 7 A . . 112121111122222 88 6 A . . 112121111222222 89 5 A . . 112121112222222 90 4 A . . 112121122222222 91 3 A . . 112121222222222 92 2 A . . 112122222222222 93 3 A . . 112112222222222 94 4 A . . 112111222222222 95 5 A . . 112111122222222 96 6 A . . 112111112222222 97 7 A . . 112111111222222 98 8 A . . 112111111122222 99 9 A . . 112111111112222 100 10 A . . 112111111111222 101 11 A . . 112111111111122 102 12 A . . 112111111111112 103 13 A . . 1121111111111110 104 14 B . . 11211111111111110 105 15 C . . 112111111111111110 106 14 A . . 112111111111111111 107 13 A . . 112111111111111121 108 12 A . . 112111111111111221 109 11 A . . 112111111111112221 110 10 A . . 112111111111122221 111 9 A . . 112111111111222221 112 8 A . . 112111111112222221 113 7 A . . 112111111122222221 114 6 A . . 112111111222222221 115 5 A . . 112111112222222221 116 4 A . . 112111122222222221 117 3 A . . 112111222222222221 118 2 A . . 112112222222222221 119 1 A . . 112122222222222221 120 0 A . . 112222222222222221 121 1 A . . 111222222222222221 122 2 A . . 111122222222222221 123 3 A . . 111112222222222221 124 4 A . . 111111222222222221 125 5 A . . 111111122222222221 126 6 A . . 111111112222222221 127 7 A . . 111111111222222221 128 8 A . . 111111111122222221 129 9 A . . 111111111112222221 130 10 A . . 111111111111222221 131 11 A . . 111111111111122221 132 12 A . . 111111111111112221 133 13 A . . 111111111111111221 134 14 A . . 111111111111111121 135 15 A . . 111111111111111111 136 14 A . . 111111111111111112 137 13 A . . 111111111111111122 138 12 A . . 111111111111111222 139 11 A . . 111111111111112222 140 10 A . . 111111111111122222 141 9 A . . 111111111111222222 142 8 A . . 111111111112222222 143 7 A . . 111111111122222222 144 6 A . . 111111111222222222 145 5 A . . 111111112222222222 146 4 A . . 111111122222222222 147 3 A . . 111111222222222222 148 2 A . . 111112222222222222 149 1 A . . 111122222222222222 150 0 A . . 111222222222222222 151 -1 A . . 112222222222222222 152 -2 A . . 122222222222222222 153 -3 A . .0222222222222222222 154 -2 B . .1222222222222222222 155 -1 C . .1022222222222222222 156 -2 A . .1012222222222222222 157 -1 B . .1112222222222222222 158 0 B . .1122222222222222222 159 1 C . .1120222222222222222 160 0 A . .1120122222222222222 161 1 B . .1121122222222222222 162 2 B . .1121222222222222222 163 3 C . .1121202222222222222 164 2 A . .1121201222222222222 165 3 B . .1121211222222222222 166 4 B . .1121212222222222222 167 5 C . .1121212022222222222 168 4 A . .1121212012222222222 169 5 B . .1121212112222222222 170 6 B . .1121212122222222222 171 7 C . .1121212120222222222 172 6 A . .1121212120122222222 173 7 B . .1121212121122222222 174 8 B . .1121212121222222222 175 9 C . .1121212121202222222 176 8 A . .1121212121201222222 177 9 B . .1121212121211222222 178 10 B . .1121212121212222222 179 11 C . .1121212121212022222 180 10 A . .1121212121212012222 181 11 B . .1121212121212112222 182 12 B . .1121212121212122222 183 13 C . .1121212121212120222 184 12 A . .1121212121212120122 185 13 B . .1121212121212121122 186 14 B . .1121212121212121222 187 15 C . .1121212121212121202 188 14 A . .1121212121212121201 189 15 B . .1121212121212121211 190 16 B . .11212121212121212120 191 17 C . .112121212121212121210 192 16 A . .112121212121212121211 193 15 A . .112121212121212121221 194 16 A . .112121212121212121121 195 17 A . .112121212121212121111 196 16 A . .112121212121212121112 197 15 A . .112121212121212121122 198 14 A . .112121212121212121222 199 13 A . .112121212121212122222 200 14 A . .112121212121212112222 After 200 steps (201 lines): state = A. Produced 21 nonzeros. Tape index 14, scanned [-3 .. 17].
State | Count | Execution count | First in step | ||||
---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
A | 142 | 21 | 72 | 49 | 0 | 3 | 14 |
B | 37 | 7 | 16 | 14 | 1 | 9 | 6 |
C | 21 | 7 | 14 | 2 | 7 |