Comment: This TM produces 1'525'688 nonzeros in 987'522'842'126 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | |||||||
| A | B1R | A2L | A1R | 1 | right | B | 2 | left | A | 1 | right | A |
| B | C1R | B2R | C0R | 1 | right | C | 2 | right | B | 0 | right | C |
| C | A1L | Z1R | A1L | 1 | left | A | 1 | right | Z | 1 | left | A |
The same TM just simple.
The same TM with repetitions reduced.
Simulation is done with tape symbol exponents.
The same TM as bck-2-macro machine.
The same TM as bck-2-macro machine with pure additive config-TRs.
Step Tpos Tape contents
0 0 <A
1 1 1 B>
2 2 1 1 C>
3 1 1 1 <A 1
+ 5 -1 <A 2 2 1
6 0 1 B> 2 2 1
7 1 1 0 C> 2 1
8 0 1 0 <A 1 1
9 1 1 1 B> 1 1
+ 11 3 1 1 2 2 B>
12 4 1 1 2 2 1 C>
13 3 1 1 2 2 1 <A 1
14 2 1 1 2 2 <A 2 1
15 3 1 1 2 1 A> 2 1
16 4 1 1 2 1 1 A> 1
17 3 1 1 2 1 1 <A 2
+ 19 1 1 1 2 <A 23
20 2 13 A> 23
+ 23 5 16 A>
24 6 17 B>
25 7 18 C>
26 6 18 <A 1
+ 34 -2 <A 28 1
35 -1 1 B> 28 1
36 0 1 0 C> 27 1
37 -1 1 0 <A 1 26 1
38 0 1 1 B> 1 26 1
39 1 1 1 2 B> 26 1
40 2 1 1 2 0 C> 25 1
41 1 1 1 2 0 <A 1 24 1
42 2 1 1 2 1 B> 1 24 1
43 3 1 1 2 1 2 B> 24 1
44 4 1 1 2 1 2 0 C> 23 1
45 3 1 1 2 1 2 0 <A 1 2 2 1
46 4 1 1 2 1 2 1 B> 1 2 2 1
47 5 1 1 2 1 2 1 2 B> 2 2 1
48 6 1 1 2 1 2 1 2 0 C> 2 1
49 5 1 1 2 1 2 1 2 0 <A 1 1
50 6 1 1 2 1 2 1 2 1 B> 1 1
+ 52 8 1 1 2 1 2 1 2 1 2 2 B>
53 9 1 1 2 1 2 1 2 1 2 2 1 C>
54 8 1 1 2 1 2 1 2 1 2 2 1 <A 1
55 7 1 1 2 1 2 1 2 1 2 2 <A 2 1
56 8 1 1 2 1 2 1 2 1 2 1 A> 2 1
57 9 1 1 2 1 2 1 2 1 2 1 1 A> 1
58 8 1 1 2 1 2 1 2 1 2 1 1 <A 2
+ 60 6 1 1 2 1 2 1 2 1 2 <A 23
61 7 1 1 2 1 2 1 2 1 1 A> 23
+ 64 10 1 1 2 1 2 1 2 15 A>
65 11 1 1 2 1 2 1 2 16 B>
66 12 1 1 2 1 2 1 2 17 C>
67 11 1 1 2 1 2 1 2 17 <A 1
+ 74 4 1 1 2 1 2 1 2 <A 27 1
75 5 1 1 2 1 2 1 1 A> 27 1
+ 82 12 1 1 2 1 2 19 A> 1
83 11 1 1 2 1 2 19 <A 2
+ 92 2 1 1 2 1 2 <A 210
93 3 1 1 2 1 1 A> 210
+ 103 13 1 1 2 112 A>
104 14 1 1 2 113 B>
105 15 1 1 2 114 C>
106 14 1 1 2 114 <A 1
+ 120 0 1 1 2 <A 214 1
121 1 13 A> 214 1
+ 135 15 117 A> 1
136 14 117 <A 2
+ 153 -3 <A 218
154 -2 1 B> 218
155 -1 1 0 C> 217
156 -2 1 0 <A 1 216
157 -1 1 1 B> 1 216
158 0 1 1 2 B> 216
159 1 1 1 2 0 C> 215
160 0 1 1 2 0 <A 1 214
161 1 1 1 2 1 B> 1 214
162 2 1 1 2 1 2 B> 214
163 3 1 1 2 1 2 0 C> 213
164 2 1 1 2 1 2 0 <A 1 212
165 3 1 1 2 1 2 1 B> 1 212
166 4 1 1 2 1 2 1 2 B> 212
167 5 1 1 2 1 2 1 2 0 C> 211
168 4 1 1 2 1 2 1 2 0 <A 1 210
169 5 1 1 2 1 2 1 2 1 B> 1 210
170 6 1 1 2 1 2 1 2 1 2 B> 210
171 7 1 1 2 1 2 1 2 1 2 0 C> 29
172 6 1 1 2 1 2 1 2 1 2 0 <A 1 28
173 7 1 1 2 1 2 1 2 1 2 1 B> 1 28
174 8 1 1 2 1 2 1 2 1 2 1 2 B> 28
175 9 1 1 2 1 2 1 2 1 2 1 2 0 C> 27
176 8 1 1 2 1 2 1 2 1 2 1 2 0 <A 1 26
177 9 1 1 2 1 2 1 2 1 2 1 2 1 B> 1 26
178 10 1 1 2 1 2 1 2 1 2 1 2 1 2 B> 26
179 11 1 1 2 1 2 1 2 1 2 1 2 1 2 0 C> 25
180 10 1 1 2 1 2 1 2 1 2 1 2 1 2 0 <A 1 24
181 11 1 1 2 1 2 1 2 1 2 1 2 1 2 1 B> 1 24
182 12 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 24
183 13 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 C> 23
184 12 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 <A 1 2 2
185 13 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 B> 1 2 2
186 14 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 2 2
187 15 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 C> 2
188 14 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 <A 1
189 15 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 B> 1
190 16 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B>
191 17 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 C>
192 16 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 <A 1
193 15 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <A 2 1
194 16 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 A> 2 1
195 17 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 13 A> 1
196 16 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 13 <A 2
+ 199 13 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <A 24
200 14 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 A> 24
+ 204 18 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 16 A>
205 19 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 17 B>
206 20 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 18 C>
207 19 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 18 <A 1
+ 215 11 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <A 28 1
216 12 1 1 2 1 2 1 2 1 2 1 2 1 2 1 1 A> 28 1
+ 224 20 1 1 2 1 2 1 2 1 2 1 2 1 2 110 A> 1
225 19 1 1 2 1 2 1 2 1 2 1 2 1 2 110 <A 2
+ 235 9 1 1 2 1 2 1 2 1 2 1 2 1 2 <A 211
236 10 1 1 2 1 2 1 2 1 2 1 2 1 1 A> 211
+ 247 21 1 1 2 1 2 1 2 1 2 1 2 113 A>
248 22 1 1 2 1 2 1 2 1 2 1 2 114 B>
249 23 1 1 2 1 2 1 2 1 2 1 2 115 C>
250 22 1 1 2 1 2 1 2 1 2 1 2 115 <A 1
+ 265 7 1 1 2 1 2 1 2 1 2 1 2 <A 215 1
266 8 1 1 2 1 2 1 2 1 2 1 1 A> 215 1
+ 281 23 1 1 2 1 2 1 2 1 2 117 A> 1
282 22 1 1 2 1 2 1 2 1 2 117 <A 2
+ 299 5 1 1 2 1 2 1 2 1 2 <A 218
300 6 1 1 2 1 2 1 2 1 1 A> 218
+ 318 24 1 1 2 1 2 1 2 120 A>
319 25 1 1 2 1 2 1 2 121 B>
320 26 1 1 2 1 2 1 2 122 C>
321 25 1 1 2 1 2 1 2 122 <A 1
+ 343 3 1 1 2 1 2 1 2 <A 222 1
344 4 1 1 2 1 2 1 1 A> 222 1
+ 366 26 1 1 2 1 2 124 A> 1
367 25 1 1 2 1 2 124 <A 2
+ 391 1 1 1 2 1 2 <A 225
392 2 1 1 2 1 1 A> 225
+ 417 27 1 1 2 127 A>
418 28 1 1 2 128 B>
419 29 1 1 2 129 C>
420 28 1 1 2 129 <A 1
+ 449 -1 1 1 2 <A 229 1
450 0 13 A> 229 1
+ 479 29 132 A> 1
480 28 132 <A 2
+ 512 -4 <A 233
513 -3 1 B> 233
514 -2 1 0 C> 232
515 -3 1 0 <A 1 231
516 -2 1 1 B> 1 231
517 -1 1 1 2 B> 231
518 0 1 1 2 0 C> 230
519 -1 1 1 2 0 <A 1 229
520 0 1 1 2 1 B> 1 229
521 1 1 1 2 1 2 B> 229
522 2 1 1 2 1 2 0 C> 228
523 1 1 1 2 1 2 0 <A 1 227
524 2 1 1 2 1 2 1 B> 1 227
525 3 1 1 2 1 2 1 2 B> 227
526 4 1 1 2 1 2 1 2 0 C> 226
527 3 1 1 2 1 2 1 2 0 <A 1 225
528 4 1 1 2 1 2 1 2 1 B> 1 225
529 5 1 1 2 1 2 1 2 1 2 B> 225
530 6 1 1 2 1 2 1 2 1 2 0 C> 224
531 5 1 1 2 1 2 1 2 1 2 0 <A 1 223
532 6 1 1 2 1 2 1 2 1 2 1 B> 1 223
533 7 1 1 2 1 2 1 2 1 2 1 2 B> 223
534 8 1 1 2 1 2 1 2 1 2 1 2 0 C> 222
535 7 1 1 2 1 2 1 2 1 2 1 2 0 <A 1 221
536 8 1 1 2 1 2 1 2 1 2 1 2 1 B> 1 221
537 9 1 1 2 1 2 1 2 1 2 1 2 1 2 B> 221
538 10 1 1 2 1 2 1 2 1 2 1 2 1 2 0 C> 220
539 9 1 1 2 1 2 1 2 1 2 1 2 1 2 0 <A 1 219
540 10 1 1 2 1 2 1 2 1 2 1 2 1 2 1 B> 1 219
541 11 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 219
542 12 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 C> 218
543 11 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 <A 1 217
544 12 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 B> 1 217
545 13 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 217
546 14 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 C> 216
547 13 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 <A 1 215
548 14 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 B> 1 215
549 15 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 215
550 16 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 C> 214
551 15 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 <A 1 213
552 16 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 B> 1 213
553 17 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 213
554 18 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 C> 212
555 17 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 <A 1 211
556 18 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 B> 1 211
557 19 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 211
558 20 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 C> 210
559 19 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 <A 1 29
560 20 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 B> 1 29
561 21 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 29
562 22 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 C> 28
After 562 steps (201 lines): state = C.
Produced 33 nonzeros.
Tape index 22, scanned [-4 .. 29].
| State | Count | Execution count | First in step | ||||
|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
| A | 459 | 38 | 233 | 188 | 0 | 3 | 14 |
| B | 66 | 11 | 28 | 27 | 1 | 9 | 6 |
| C | 37 | 11 | 26 | 2 | 7 | ||