Comment: This TM produces 1'525'688 nonzeros in 987'522'842'126 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 0 | on 1 | on 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | |||||||
A | B1R | A2L | A1R | 1 | right | B | 2 | left | A | 1 | right | A |
B | C1R | B2R | C0R | 1 | right | C | 2 | right | B | 0 | right | C |
C | A1L | Z1R | A1L | 1 | left | A | 1 | right | Z | 1 | left | A |
The same TM just simple. The same TM with repetitions reduced. Simulation is done with tape symbol exponents. The same TM as bck-2-macro machine. The same TM as bck-2-macro machine with pure additive config-TRs. Step Tpos Tape contents 0 0 <A 1 1 1 B> 2 2 1 1 C> 3 1 1 1 <A 1 + 5 -1 <A 2 2 1 6 0 1 B> 2 2 1 7 1 1 0 C> 2 1 8 0 1 0 <A 1 1 9 1 1 1 B> 1 1 + 11 3 1 1 2 2 B> 12 4 1 1 2 2 1 C> 13 3 1 1 2 2 1 <A 1 14 2 1 1 2 2 <A 2 1 15 3 1 1 2 1 A> 2 1 16 4 1 1 2 1 1 A> 1 17 3 1 1 2 1 1 <A 2 + 19 1 1 1 2 <A 23 20 2 13 A> 23 + 23 5 16 A> 24 6 17 B> 25 7 18 C> 26 6 18 <A 1 + 34 -2 <A 28 1 35 -1 1 B> 28 1 36 0 1 0 C> 27 1 37 -1 1 0 <A 1 26 1 38 0 1 1 B> 1 26 1 39 1 1 1 2 B> 26 1 40 2 1 1 2 0 C> 25 1 41 1 1 1 2 0 <A 1 24 1 42 2 1 1 2 1 B> 1 24 1 43 3 1 1 2 1 2 B> 24 1 44 4 1 1 2 1 2 0 C> 23 1 45 3 1 1 2 1 2 0 <A 1 2 2 1 46 4 1 1 2 1 2 1 B> 1 2 2 1 47 5 1 1 2 1 2 1 2 B> 2 2 1 48 6 1 1 2 1 2 1 2 0 C> 2 1 49 5 1 1 2 1 2 1 2 0 <A 1 1 50 6 1 1 2 1 2 1 2 1 B> 1 1 + 52 8 1 1 2 1 2 1 2 1 2 2 B> 53 9 1 1 2 1 2 1 2 1 2 2 1 C> 54 8 1 1 2 1 2 1 2 1 2 2 1 <A 1 55 7 1 1 2 1 2 1 2 1 2 2 <A 2 1 56 8 1 1 2 1 2 1 2 1 2 1 A> 2 1 57 9 1 1 2 1 2 1 2 1 2 1 1 A> 1 58 8 1 1 2 1 2 1 2 1 2 1 1 <A 2 + 60 6 1 1 2 1 2 1 2 1 2 <A 23 61 7 1 1 2 1 2 1 2 1 1 A> 23 + 64 10 1 1 2 1 2 1 2 15 A> 65 11 1 1 2 1 2 1 2 16 B> 66 12 1 1 2 1 2 1 2 17 C> 67 11 1 1 2 1 2 1 2 17 <A 1 + 74 4 1 1 2 1 2 1 2 <A 27 1 75 5 1 1 2 1 2 1 1 A> 27 1 + 82 12 1 1 2 1 2 19 A> 1 83 11 1 1 2 1 2 19 <A 2 + 92 2 1 1 2 1 2 <A 210 93 3 1 1 2 1 1 A> 210 + 103 13 1 1 2 112 A> 104 14 1 1 2 113 B> 105 15 1 1 2 114 C> 106 14 1 1 2 114 <A 1 + 120 0 1 1 2 <A 214 1 121 1 13 A> 214 1 + 135 15 117 A> 1 136 14 117 <A 2 + 153 -3 <A 218 154 -2 1 B> 218 155 -1 1 0 C> 217 156 -2 1 0 <A 1 216 157 -1 1 1 B> 1 216 158 0 1 1 2 B> 216 159 1 1 1 2 0 C> 215 160 0 1 1 2 0 <A 1 214 161 1 1 1 2 1 B> 1 214 162 2 1 1 2 1 2 B> 214 163 3 1 1 2 1 2 0 C> 213 164 2 1 1 2 1 2 0 <A 1 212 165 3 1 1 2 1 2 1 B> 1 212 166 4 1 1 2 1 2 1 2 B> 212 167 5 1 1 2 1 2 1 2 0 C> 211 168 4 1 1 2 1 2 1 2 0 <A 1 210 169 5 1 1 2 1 2 1 2 1 B> 1 210 170 6 1 1 2 1 2 1 2 1 2 B> 210 171 7 1 1 2 1 2 1 2 1 2 0 C> 29 172 6 1 1 2 1 2 1 2 1 2 0 <A 1 28 173 7 1 1 2 1 2 1 2 1 2 1 B> 1 28 174 8 1 1 2 1 2 1 2 1 2 1 2 B> 28 175 9 1 1 2 1 2 1 2 1 2 1 2 0 C> 27 176 8 1 1 2 1 2 1 2 1 2 1 2 0 <A 1 26 177 9 1 1 2 1 2 1 2 1 2 1 2 1 B> 1 26 178 10 1 1 2 1 2 1 2 1 2 1 2 1 2 B> 26 179 11 1 1 2 1 2 1 2 1 2 1 2 1 2 0 C> 25 180 10 1 1 2 1 2 1 2 1 2 1 2 1 2 0 <A 1 24 181 11 1 1 2 1 2 1 2 1 2 1 2 1 2 1 B> 1 24 182 12 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 24 183 13 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 C> 23 184 12 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 <A 1 2 2 185 13 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 B> 1 2 2 186 14 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 2 2 187 15 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 C> 2 188 14 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 <A 1 189 15 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 B> 1 190 16 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 191 17 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 C> 192 16 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 <A 1 193 15 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <A 2 1 194 16 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 A> 2 1 195 17 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 13 A> 1 196 16 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 13 <A 2 + 199 13 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <A 24 200 14 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 A> 24 + 204 18 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 16 A> 205 19 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 17 B> 206 20 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 18 C> 207 19 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 18 <A 1 + 215 11 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 <A 28 1 216 12 1 1 2 1 2 1 2 1 2 1 2 1 2 1 1 A> 28 1 + 224 20 1 1 2 1 2 1 2 1 2 1 2 1 2 110 A> 1 225 19 1 1 2 1 2 1 2 1 2 1 2 1 2 110 <A 2 + 235 9 1 1 2 1 2 1 2 1 2 1 2 1 2 <A 211 236 10 1 1 2 1 2 1 2 1 2 1 2 1 1 A> 211 + 247 21 1 1 2 1 2 1 2 1 2 1 2 113 A> 248 22 1 1 2 1 2 1 2 1 2 1 2 114 B> 249 23 1 1 2 1 2 1 2 1 2 1 2 115 C> 250 22 1 1 2 1 2 1 2 1 2 1 2 115 <A 1 + 265 7 1 1 2 1 2 1 2 1 2 1 2 <A 215 1 266 8 1 1 2 1 2 1 2 1 2 1 1 A> 215 1 + 281 23 1 1 2 1 2 1 2 1 2 117 A> 1 282 22 1 1 2 1 2 1 2 1 2 117 <A 2 + 299 5 1 1 2 1 2 1 2 1 2 <A 218 300 6 1 1 2 1 2 1 2 1 1 A> 218 + 318 24 1 1 2 1 2 1 2 120 A> 319 25 1 1 2 1 2 1 2 121 B> 320 26 1 1 2 1 2 1 2 122 C> 321 25 1 1 2 1 2 1 2 122 <A 1 + 343 3 1 1 2 1 2 1 2 <A 222 1 344 4 1 1 2 1 2 1 1 A> 222 1 + 366 26 1 1 2 1 2 124 A> 1 367 25 1 1 2 1 2 124 <A 2 + 391 1 1 1 2 1 2 <A 225 392 2 1 1 2 1 1 A> 225 + 417 27 1 1 2 127 A> 418 28 1 1 2 128 B> 419 29 1 1 2 129 C> 420 28 1 1 2 129 <A 1 + 449 -1 1 1 2 <A 229 1 450 0 13 A> 229 1 + 479 29 132 A> 1 480 28 132 <A 2 + 512 -4 <A 233 513 -3 1 B> 233 514 -2 1 0 C> 232 515 -3 1 0 <A 1 231 516 -2 1 1 B> 1 231 517 -1 1 1 2 B> 231 518 0 1 1 2 0 C> 230 519 -1 1 1 2 0 <A 1 229 520 0 1 1 2 1 B> 1 229 521 1 1 1 2 1 2 B> 229 522 2 1 1 2 1 2 0 C> 228 523 1 1 1 2 1 2 0 <A 1 227 524 2 1 1 2 1 2 1 B> 1 227 525 3 1 1 2 1 2 1 2 B> 227 526 4 1 1 2 1 2 1 2 0 C> 226 527 3 1 1 2 1 2 1 2 0 <A 1 225 528 4 1 1 2 1 2 1 2 1 B> 1 225 529 5 1 1 2 1 2 1 2 1 2 B> 225 530 6 1 1 2 1 2 1 2 1 2 0 C> 224 531 5 1 1 2 1 2 1 2 1 2 0 <A 1 223 532 6 1 1 2 1 2 1 2 1 2 1 B> 1 223 533 7 1 1 2 1 2 1 2 1 2 1 2 B> 223 534 8 1 1 2 1 2 1 2 1 2 1 2 0 C> 222 535 7 1 1 2 1 2 1 2 1 2 1 2 0 <A 1 221 536 8 1 1 2 1 2 1 2 1 2 1 2 1 B> 1 221 537 9 1 1 2 1 2 1 2 1 2 1 2 1 2 B> 221 538 10 1 1 2 1 2 1 2 1 2 1 2 1 2 0 C> 220 539 9 1 1 2 1 2 1 2 1 2 1 2 1 2 0 <A 1 219 540 10 1 1 2 1 2 1 2 1 2 1 2 1 2 1 B> 1 219 541 11 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 219 542 12 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 C> 218 543 11 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 <A 1 217 544 12 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 B> 1 217 545 13 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 217 546 14 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 C> 216 547 13 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 <A 1 215 548 14 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 B> 1 215 549 15 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 215 550 16 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 C> 214 551 15 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 <A 1 213 552 16 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 B> 1 213 553 17 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 213 554 18 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 C> 212 555 17 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 <A 1 211 556 18 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 B> 1 211 557 19 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 211 558 20 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 C> 210 559 19 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 <A 1 29 560 20 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 B> 1 29 561 21 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B> 29 562 22 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0 C> 28 After 562 steps (201 lines): state = C. Produced 33 nonzeros. Tape index 22, scanned [-4 .. 29].
State | Count | Execution count | First in step | ||||
---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 0 | on 1 | on 2 | ||
A | 459 | 38 | 233 | 188 | 0 | 3 | 14 |
B | 66 | 11 | 28 | 27 | 1 | 9 | 6 |
C | 37 | 11 | 26 | 2 | 7 |