2-state 5-symbol TM #j (G. Lafitte & C. Papazian)

Comment: This TM produces 143 nonzeros in 26,375,397,569,930 steps.

Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State on
0
on
1
on
2
on
3
on
4
on 0 on 1 on 2 on 3 on 4
Print Move Goto Print Move Goto Print Move Goto Print Move Goto Print Move Goto
A B1R A3L A1L A4L A1R 1 right B 3 left A 1 left A 4 left A 1 right A
B B2L A2R Z1R A0R B0R 2 left B 2 right A 1 right Z 0 right A 0 right B
Transition table
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 4-bck-bck-2-bck-2-bck-4-macro machine.
The same TM as 4-bck-bck-2-bck-2-bck-4-macro machine with pure additive config-TRs.

  Step Tpos St Tape contents
     0    0 A . . . 0
     1    1 B . . . 10
     2    0 B . . . 12
     3    1 A . . . 22
     4    0 A . . . 21
     5   -1 A . . .011
     6    0 B . . .111
     7    1 A . . .121
     8    0 A . . .123
     9   -1 A . . .113
    10   -2 A . . 0313
    11   -1 B . . 1313
    12    0 A . . 1013
    13   -1 A . . 1033
    14    0 B . . 1133
    15    1 A . . 1103
    16    0 A . . 1104
    17    1 B . . 1114
    18    2 B . . 11100
    19    1 B . . 11102
    20    0 B . . 11122
    21    1 A . . 11222
    22    0 A . . 11212
    23   -1 A . . 11112
    24   -2 A . . 13112
    25   -3 A . .033112
    26   -2 B . .133112
    27   -1 A . .103112
    28   -2 A . .104112
    29   -1 B . .114112
    30    0 B . .110112
    31    1 A . .110212
    32    0 A . .110232
    33   -1 A . .110132
    34    0 B . .111132
    35    1 A . .111232
    36    0 A . .111242
    37   -1 A . .111142
    38   -2 A . .113142
    39   -3 A . .133142
    40   -4 A . 0333142
    41   -3 B . 1333142
    42   -2 A . 1033142
    43   -3 A . 1043142
    44   -2 B . 1143142
    45   -1 B . 1103142
    46    0 A . 1100142
    47   -1 A . 1100342
    48    0 B . 1101342
    49    1 A . 1101042
    50    2 A . 1101012
    51    1 A . 1101011
    52    0 A . 1101031
    53    1 B . 1101131
    54    2 A . 1101101
    55    1 A . 1101103
    56    2 B . 1101113
    57    3 A . 11011100
    58    4 B . 110111010
    59    3 B . 110111012
    60    4 A . 110111022
    61    3 A . 110111021
    62    2 A . 110111011
    63    3 B . 110111111
    64    4 A . 110111121
    65    3 A . 110111123
    66    2 A . 110111113
    67    1 A . 110111313
    68    0 A . 110113313
    69   -1 A . 110133313
    70   -2 A . 110333313
    71   -1 B . 111333313
    72    0 A . 111033313
    73   -1 A . 111043313
    74    0 B . 111143313
    75    1 B . 111103313
    76    2 A . 111100313
    77    1 A . 111100413
    78    2 B . 111101413
    79    3 B . 111101013
    80    4 A . 111101023
    81    3 A . 111101024
    82    2 A . 111101014
    83    3 B . 111101114
    84    4 A . 111101124
    85    5 A . 1111011210
    86    6 B . 11110112110
    87    5 B . 11110112112
    88    6 A . 11110112122
    89    5 A . 11110112121
    90    4 A . 11110112111
    91    3 A . 11110112311
    92    2 A . 11110111311
    93    1 A . 11110131311
    94    0 A . 11110331311
    95    1 B . 11111331311
    96    2 A . 11111031311
    97    1 A . 11111041311
    98    2 B . 11111141311
    99    3 B . 11111101311
   100    4 A . 11111102311
   101    3 A . 11111102411
   102    2 A . 11111101411
   103    3 B . 11111111411
   104    4 A . 11111112411
   105    5 A . 11111112111
   106    4 A . 11111112131
   107    3 A . 11111112331
   108    2 A . 11111111331
   109    1 A . 11111131331
   110    0 A . 11111331331
   111   -1 A . 11113331331
   112   -2 A . 11133331331
   113   -3 A . 11333331331
   114   -4 A . 13333331331
   115   -5 A .033333331331
   116   -4 B .133333331331
   117   -3 A .103333331331
   118   -4 A .104333331331
   119   -3 B .114333331331
   120   -2 B .110333331331
   121   -1 A .110033331331
   122   -2 A .110043331331
   123   -1 B .110143331331
   124    0 B .110103331331
   125    1 A .110100331331
   126    0 A .110100431331
   127    1 B .110101431331
   128    2 B .110101031331
   129    3 A .110101001331
   130    2 A .110101003331
   131    3 B .110101013331
   132    4 A .110101010331
   133    3 A .110101010431
   134    4 B .110101011431
   135    5 B .110101011031
   136    6 A .110101011001
   137    5 A .110101011003
   138    6 B .110101011013
   139    7 A .1101010110100
   140    8 B .11010101101010
   141    7 B .11010101101012
   142    8 A .11010101101022
   143    7 A .11010101101021
   144    6 A .11010101101011
   145    7 B .11010101101111
   146    8 A .11010101101121
   147    7 A .11010101101123
   148    6 A .11010101101113
   149    5 A .11010101101313
   150    4 A .11010101103313
   151    5 B .11010101113313
   152    6 A .11010101110313
   153    5 A .11010101110413
   154    6 B .11010101111413
   155    7 B .11010101111013
   156    8 A .11010101111023
   157    7 A .11010101111024
   158    6 A .11010101111014
   159    7 B .11010101111114
   160    8 A .11010101111124
   161    9 A .110101011111210
   162   10 B .1101010111112110
   163    9 B .1101010111112112
   164   10 A .1101010111112122
   165    9 A .1101010111112121
   166    8 A .1101010111112111
   167    7 A .1101010111112311
   168    6 A .1101010111111311
   169    5 A .1101010111131311
   170    4 A .1101010111331311
   171    3 A .1101010113331311
   172    2 A .1101010133331311
   173    1 A .1101010333331311
   174    2 B .1101011333331311
   175    3 A .1101011033331311
   176    2 A .1101011043331311
   177    3 B .1101011143331311
   178    4 B .1101011103331311
   179    5 A .1101011100331311
   180    4 A .1101011100431311
   181    5 B .1101011101431311
   182    6 B .1101011101031311
   183    7 A .1101011101001311
   184    6 A .1101011101003311
   185    7 B .1101011101013311
   186    8 A .1101011101010311
   187    7 A .1101011101010411
   188    8 B .1101011101011411
   189    9 B .1101011101011011
   190   10 A .1101011101011021
   191    9 A .1101011101011023
   192    8 A .1101011101011013
   193    9 B .1101011101011113
   194   10 A .1101011101011123
   195    9 A .1101011101011124
   196    8 A .1101011101011114
   197    7 A .1101011101011314
   198    6 A .1101011101013314
   199    5 A .1101011101033314
   200    6 B .1101011101133314

After 200 steps (201 lines): state = B.
Produced     13 nonzeros.
Tape index 6, scanned [-5 .. 10].
State Count Execution count First in step
on 0 on 1 on 2 on 3 on 4 on 0 on 1 on 2 on 3 on 4
A 137 43 45 26 19 4 0 7 3 15 49
B 63 7 19   23 14 1 2   11 17
Execution statistics

The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 4-bck-bck-2-bck-2-bck-4-macro machine.
The same TM as 4-bck-bck-2-bck-2-bck-4-macro machine with pure additive config-TRs.

To the BB simulations page of Heiner Marxen.
To the busy beaver page of Heiner Marxen.
To the home page of Heiner Marxen.
Tue Jul 6 22:12:07 CEST 2010