Comment: This TM produces 143 nonzeros in 26,375,397,569,930 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
| State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
| A | B1R | A3L | A1L | A4L | A1R | 1 | right | B | 3 | left | A | 1 | left | A | 4 | left | A | 1 | right | A |
| B | B2L | A2R | Z1R | A0R | B0R | 2 | left | B | 2 | right | A | 1 | right | Z | 0 | right | A | 0 | right | B |
Simulation is done just simple.
The same TM with repetitions reduced.
The same TM with tape symbol exponents.
The same TM as 4-bck-bck-2-bck-2-bck-4-macro machine.
The same TM as 4-bck-bck-2-bck-2-bck-4-macro machine with pure additive config-TRs.
Step Tpos St Tape contents
0 0 A . . . 0
1 1 B . . . 10
2 0 B . . . 12
3 1 A . . . 22
4 0 A . . . 21
5 -1 A . . .011
6 0 B . . .111
7 1 A . . .121
8 0 A . . .123
9 -1 A . . .113
10 -2 A . . 0313
11 -1 B . . 1313
12 0 A . . 1013
13 -1 A . . 1033
14 0 B . . 1133
15 1 A . . 1103
16 0 A . . 1104
17 1 B . . 1114
18 2 B . . 11100
19 1 B . . 11102
20 0 B . . 11122
21 1 A . . 11222
22 0 A . . 11212
23 -1 A . . 11112
24 -2 A . . 13112
25 -3 A . .033112
26 -2 B . .133112
27 -1 A . .103112
28 -2 A . .104112
29 -1 B . .114112
30 0 B . .110112
31 1 A . .110212
32 0 A . .110232
33 -1 A . .110132
34 0 B . .111132
35 1 A . .111232
36 0 A . .111242
37 -1 A . .111142
38 -2 A . .113142
39 -3 A . .133142
40 -4 A . 0333142
41 -3 B . 1333142
42 -2 A . 1033142
43 -3 A . 1043142
44 -2 B . 1143142
45 -1 B . 1103142
46 0 A . 1100142
47 -1 A . 1100342
48 0 B . 1101342
49 1 A . 1101042
50 2 A . 1101012
51 1 A . 1101011
52 0 A . 1101031
53 1 B . 1101131
54 2 A . 1101101
55 1 A . 1101103
56 2 B . 1101113
57 3 A . 11011100
58 4 B . 110111010
59 3 B . 110111012
60 4 A . 110111022
61 3 A . 110111021
62 2 A . 110111011
63 3 B . 110111111
64 4 A . 110111121
65 3 A . 110111123
66 2 A . 110111113
67 1 A . 110111313
68 0 A . 110113313
69 -1 A . 110133313
70 -2 A . 110333313
71 -1 B . 111333313
72 0 A . 111033313
73 -1 A . 111043313
74 0 B . 111143313
75 1 B . 111103313
76 2 A . 111100313
77 1 A . 111100413
78 2 B . 111101413
79 3 B . 111101013
80 4 A . 111101023
81 3 A . 111101024
82 2 A . 111101014
83 3 B . 111101114
84 4 A . 111101124
85 5 A . 1111011210
86 6 B . 11110112110
87 5 B . 11110112112
88 6 A . 11110112122
89 5 A . 11110112121
90 4 A . 11110112111
91 3 A . 11110112311
92 2 A . 11110111311
93 1 A . 11110131311
94 0 A . 11110331311
95 1 B . 11111331311
96 2 A . 11111031311
97 1 A . 11111041311
98 2 B . 11111141311
99 3 B . 11111101311
100 4 A . 11111102311
101 3 A . 11111102411
102 2 A . 11111101411
103 3 B . 11111111411
104 4 A . 11111112411
105 5 A . 11111112111
106 4 A . 11111112131
107 3 A . 11111112331
108 2 A . 11111111331
109 1 A . 11111131331
110 0 A . 11111331331
111 -1 A . 11113331331
112 -2 A . 11133331331
113 -3 A . 11333331331
114 -4 A . 13333331331
115 -5 A .033333331331
116 -4 B .133333331331
117 -3 A .103333331331
118 -4 A .104333331331
119 -3 B .114333331331
120 -2 B .110333331331
121 -1 A .110033331331
122 -2 A .110043331331
123 -1 B .110143331331
124 0 B .110103331331
125 1 A .110100331331
126 0 A .110100431331
127 1 B .110101431331
128 2 B .110101031331
129 3 A .110101001331
130 2 A .110101003331
131 3 B .110101013331
132 4 A .110101010331
133 3 A .110101010431
134 4 B .110101011431
135 5 B .110101011031
136 6 A .110101011001
137 5 A .110101011003
138 6 B .110101011013
139 7 A .1101010110100
140 8 B .11010101101010
141 7 B .11010101101012
142 8 A .11010101101022
143 7 A .11010101101021
144 6 A .11010101101011
145 7 B .11010101101111
146 8 A .11010101101121
147 7 A .11010101101123
148 6 A .11010101101113
149 5 A .11010101101313
150 4 A .11010101103313
151 5 B .11010101113313
152 6 A .11010101110313
153 5 A .11010101110413
154 6 B .11010101111413
155 7 B .11010101111013
156 8 A .11010101111023
157 7 A .11010101111024
158 6 A .11010101111014
159 7 B .11010101111114
160 8 A .11010101111124
161 9 A .110101011111210
162 10 B .1101010111112110
163 9 B .1101010111112112
164 10 A .1101010111112122
165 9 A .1101010111112121
166 8 A .1101010111112111
167 7 A .1101010111112311
168 6 A .1101010111111311
169 5 A .1101010111131311
170 4 A .1101010111331311
171 3 A .1101010113331311
172 2 A .1101010133331311
173 1 A .1101010333331311
174 2 B .1101011333331311
175 3 A .1101011033331311
176 2 A .1101011043331311
177 3 B .1101011143331311
178 4 B .1101011103331311
179 5 A .1101011100331311
180 4 A .1101011100431311
181 5 B .1101011101431311
182 6 B .1101011101031311
183 7 A .1101011101001311
184 6 A .1101011101003311
185 7 B .1101011101013311
186 8 A .1101011101010311
187 7 A .1101011101010411
188 8 B .1101011101011411
189 9 B .1101011101011011
190 10 A .1101011101011021
191 9 A .1101011101011023
192 8 A .1101011101011013
193 9 B .1101011101011113
194 10 A .1101011101011123
195 9 A .1101011101011124
196 8 A .1101011101011114
197 7 A .1101011101011314
198 6 A .1101011101013314
199 5 A .1101011101033314
200 6 B .1101011101133314
After 200 steps (201 lines): state = B.
Produced 13 nonzeros.
Tape index 6, scanned [-5 .. 10].
| State | Count | Execution count | First in step | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
| A | 137 | 43 | 45 | 26 | 19 | 4 | 0 | 7 | 3 | 15 | 49 |
| B | 63 | 7 | 19 | 23 | 14 | 1 | 2 | 11 | 17 | ||