Comment: This TM produces 143 nonzeros in 26,375,397,569,930 steps. Constructed by $Id: hmBBsimu.awk,v 1.12 2010/07/06 19:46:42 heiner Exp $
State | on 0 |
on 1 |
on 2 |
on 3 |
on 4 |
on 0 | on 1 | on 2 | on 3 | on 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Move | Goto | Move | Goto | Move | Goto | Move | Goto | Move | Goto | |||||||||||
A | B1R | A3L | A1L | A4L | A1R | 1 | right | B | 3 | left | A | 1 | left | A | 4 | left | A | 1 | right | A |
B | B2L | A2R | Z1R | A0R | B0R | 2 | left | B | 2 | right | A | 1 | right | Z | 0 | right | A | 0 | right | B |
Simulation is done just simple. The same TM with repetitions reduced. The same TM with tape symbol exponents. The same TM as 4-bck-bck-2-bck-2-bck-4-macro machine. The same TM as 4-bck-bck-2-bck-2-bck-4-macro machine with pure additive config-TRs. Step Tpos St Tape contents 0 0 A . . . 0 1 1 B . . . 10 2 0 B . . . 12 3 1 A . . . 22 4 0 A . . . 21 5 -1 A . . .011 6 0 B . . .111 7 1 A . . .121 8 0 A . . .123 9 -1 A . . .113 10 -2 A . . 0313 11 -1 B . . 1313 12 0 A . . 1013 13 -1 A . . 1033 14 0 B . . 1133 15 1 A . . 1103 16 0 A . . 1104 17 1 B . . 1114 18 2 B . . 11100 19 1 B . . 11102 20 0 B . . 11122 21 1 A . . 11222 22 0 A . . 11212 23 -1 A . . 11112 24 -2 A . . 13112 25 -3 A . .033112 26 -2 B . .133112 27 -1 A . .103112 28 -2 A . .104112 29 -1 B . .114112 30 0 B . .110112 31 1 A . .110212 32 0 A . .110232 33 -1 A . .110132 34 0 B . .111132 35 1 A . .111232 36 0 A . .111242 37 -1 A . .111142 38 -2 A . .113142 39 -3 A . .133142 40 -4 A . 0333142 41 -3 B . 1333142 42 -2 A . 1033142 43 -3 A . 1043142 44 -2 B . 1143142 45 -1 B . 1103142 46 0 A . 1100142 47 -1 A . 1100342 48 0 B . 1101342 49 1 A . 1101042 50 2 A . 1101012 51 1 A . 1101011 52 0 A . 1101031 53 1 B . 1101131 54 2 A . 1101101 55 1 A . 1101103 56 2 B . 1101113 57 3 A . 11011100 58 4 B . 110111010 59 3 B . 110111012 60 4 A . 110111022 61 3 A . 110111021 62 2 A . 110111011 63 3 B . 110111111 64 4 A . 110111121 65 3 A . 110111123 66 2 A . 110111113 67 1 A . 110111313 68 0 A . 110113313 69 -1 A . 110133313 70 -2 A . 110333313 71 -1 B . 111333313 72 0 A . 111033313 73 -1 A . 111043313 74 0 B . 111143313 75 1 B . 111103313 76 2 A . 111100313 77 1 A . 111100413 78 2 B . 111101413 79 3 B . 111101013 80 4 A . 111101023 81 3 A . 111101024 82 2 A . 111101014 83 3 B . 111101114 84 4 A . 111101124 85 5 A . 1111011210 86 6 B . 11110112110 87 5 B . 11110112112 88 6 A . 11110112122 89 5 A . 11110112121 90 4 A . 11110112111 91 3 A . 11110112311 92 2 A . 11110111311 93 1 A . 11110131311 94 0 A . 11110331311 95 1 B . 11111331311 96 2 A . 11111031311 97 1 A . 11111041311 98 2 B . 11111141311 99 3 B . 11111101311 100 4 A . 11111102311 101 3 A . 11111102411 102 2 A . 11111101411 103 3 B . 11111111411 104 4 A . 11111112411 105 5 A . 11111112111 106 4 A . 11111112131 107 3 A . 11111112331 108 2 A . 11111111331 109 1 A . 11111131331 110 0 A . 11111331331 111 -1 A . 11113331331 112 -2 A . 11133331331 113 -3 A . 11333331331 114 -4 A . 13333331331 115 -5 A .033333331331 116 -4 B .133333331331 117 -3 A .103333331331 118 -4 A .104333331331 119 -3 B .114333331331 120 -2 B .110333331331 121 -1 A .110033331331 122 -2 A .110043331331 123 -1 B .110143331331 124 0 B .110103331331 125 1 A .110100331331 126 0 A .110100431331 127 1 B .110101431331 128 2 B .110101031331 129 3 A .110101001331 130 2 A .110101003331 131 3 B .110101013331 132 4 A .110101010331 133 3 A .110101010431 134 4 B .110101011431 135 5 B .110101011031 136 6 A .110101011001 137 5 A .110101011003 138 6 B .110101011013 139 7 A .1101010110100 140 8 B .11010101101010 141 7 B .11010101101012 142 8 A .11010101101022 143 7 A .11010101101021 144 6 A .11010101101011 145 7 B .11010101101111 146 8 A .11010101101121 147 7 A .11010101101123 148 6 A .11010101101113 149 5 A .11010101101313 150 4 A .11010101103313 151 5 B .11010101113313 152 6 A .11010101110313 153 5 A .11010101110413 154 6 B .11010101111413 155 7 B .11010101111013 156 8 A .11010101111023 157 7 A .11010101111024 158 6 A .11010101111014 159 7 B .11010101111114 160 8 A .11010101111124 161 9 A .110101011111210 162 10 B .1101010111112110 163 9 B .1101010111112112 164 10 A .1101010111112122 165 9 A .1101010111112121 166 8 A .1101010111112111 167 7 A .1101010111112311 168 6 A .1101010111111311 169 5 A .1101010111131311 170 4 A .1101010111331311 171 3 A .1101010113331311 172 2 A .1101010133331311 173 1 A .1101010333331311 174 2 B .1101011333331311 175 3 A .1101011033331311 176 2 A .1101011043331311 177 3 B .1101011143331311 178 4 B .1101011103331311 179 5 A .1101011100331311 180 4 A .1101011100431311 181 5 B .1101011101431311 182 6 B .1101011101031311 183 7 A .1101011101001311 184 6 A .1101011101003311 185 7 B .1101011101013311 186 8 A .1101011101010311 187 7 A .1101011101010411 188 8 B .1101011101011411 189 9 B .1101011101011011 190 10 A .1101011101011021 191 9 A .1101011101011023 192 8 A .1101011101011013 193 9 B .1101011101011113 194 10 A .1101011101011123 195 9 A .1101011101011124 196 8 A .1101011101011114 197 7 A .1101011101011314 198 6 A .1101011101013314 199 5 A .1101011101033314 200 6 B .1101011101133314 After 200 steps (201 lines): state = B. Produced 13 nonzeros. Tape index 6, scanned [-5 .. 10].
State | Count | Execution count | First in step | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
on 0 | on 1 | on 2 | on 3 | on 4 | on 0 | on 1 | on 2 | on 3 | on 4 | ||
A | 137 | 43 | 45 | 26 | 19 | 4 | 0 | 7 | 3 | 15 | 49 |
B | 63 | 7 | 19 | 23 | 14 | 1 | 2 | 11 | 17 |